
Fundamenta Informaticae 80 (2007) 415–433 415

IOS Press

A Data Mining Formalization to Improve Hypergraph
Minimal Transversal Computation
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Abstract. Finding hypergraph transversals is a major algorithmic issue which was shown having
many connections with the data mining area. In this paper, bydefining a new Galois connection, we
show that this problem is closely related to the mining of theso-calledcondensed representations
of frequent patterns. This data mining formalization enables us to benefit from efficient algorithms
dedicated to the extraction of condensed representations.More precisely, we demonstrate how it is
possible to use the levelwise framework to improve the hypergraph minimal transversal computation
by exploiting an anti-monotone constraint to safely prune the search space. We propose a new algo-
rithm MTMINER to extract minimal transversals and provide experiments showing that our method
is efficient in practice.

Keywords: Data mining, Hypergraph minimal transversals, Levelwise framework, Condensed rep-
resentations.

1. Introduction

Hypergraphs can be thought as a generalization of graphs where the edges, called hyperedges, connect
more than two vertices. Aminimal transversalis a set of vertices intersecting all the hyperedges which
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is minimal with respect to the inclusion. Computing hypergraph minimal transversals is a major research
question because having many applications in computer science [9]. However, this is a difficult task from
the complexity point of view partly because the number of minimal transversals can be exponentially
large in the size of the input hypergraph. The complexity of finding all the minimal transversals of
a hypergraph still remains an open issue and it is not known yet if an output polynomial total time
algorithm exists. To alleviate the writing, we generally omit the word minimal and we say hypergraph
transversals for hypergraph minimal transversals in this paper.

The hypergraph transversal problem has many connections with data mining issues [13]. Mannila
and Toivonen proved that there is a close relationship between the borders of theories (see Section 2.1
for a short definition) and the minimal transversals [19]. Ithas been shown that minimal transversals
are linked to useful patterns called emerging patterns which highlight contrasts between classes [1]. Re-
cently, minimal transversals have been efficiently used to relate different clustering results for visualizing
transactional data for knowledge discovery [8].

In this paper, we revisit the search of minimal transversalsby taking advantage of recent progress
on pattern condensed representations [5]. Let us briefly introduce basic background on condensed rep-
resentations. A pattern condensed representation gives a synthesis of large datasets and highlights the
correlations embedded in the data. One advantage of this approach is to provide powerful safe pruning
criteria during the mining and thus improve the efficiency ofalgorithms. Usually, pattern condensed
representations address the minimal frequency constrainteven if there are also condensed representa-
tions for frequency-based measures [22]. A pattern isfrequentif it occurs in the dataset more than a
user-specified threshold. Condensed representations of frequent patterns restrict the mining to specific
patterns like the free (or key) patterns or the closed patterns [4, 20]. These patterns partition the search
space in equivalence classes, the free patterns are their minimal elements (with respect to the pattern
inclusion) and the closed patterns are their maximal elements. In practice, mining either all the free pat-
terns or the closed patterns is enough to infer the frequencyof any pattern.Freenesshas one interesting
property: its anti-monotonicity with respect to the pattern inclusion (a constraintq is anti-monotoneif
and only if for all patternsX andY , q(X) andY ⊆ X impliesq(Y )). It gives a safe pruning criterion
for levelwise search in the pattern lattice [19, 4].

Our key idea is to reuse the concept of condensed representation (more precisely the freeness) for
minimal transversal computation. Our main contributions are twofold. First, thanks to the definition of
a new Galois connection, we set the hypergraph transversal issue in the levelwise framework. From this
formalization, we deduce an anti-monotone property which enables us to safely prune the search space
to get minimal transversals. Second, we provide a new algorithm MTMINER that efficiently computes all
the minimal transversals of a given hypergraph. Thus, we experimentally demonstrate that a data mining
algorithm can solve instances better than the algorithm [11] with the best theoretical complexity for the
hypergraph transversal problem.

The rest of the paper is organized as follows. Section 2 discusses related work, summarizes the
main points of this work and gives preliminary definitions. Section 3 presents the core of our method
to compute hypergraph minimal transversals. The definitionof a hypergraph Galois connection and
an extension-based characterization of minimal transversals are given. Section 4 details the pruning
strategy based on an anti-monotone property to reduce the search space and make the minimal transversal
computation efficient. Our algorithm MTMINER, based on the above mentioned Galois connection, is
presented in Section 5. Section 6 gives an experimental evaluation of MTMINER. We end this paper by
a discussion about further research in Section 7.
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2. Context

2.1. Background

Considerable efforts have been devoted to the search of minimal transversals [2, 11, 1, 16]. In [11],
Fredman and Khachiyan give an algorithm with a time complexity equal toP (n) + slog(s) wheren is
the number of vertices of the input hypergraph,P is a polynomial ands is the combined size of the
input and the output. It is, to the best of our knowledge, the algorithm having the lowest complexity
for finding the minimal transversals of a given hypergraph. Many works [6, 23, 17] focus on the case
when the hyperedge size is bounded by a constant. In this paper, we make no restriction on the input
hypergraph. Due to the gap between theoretical complexity and practical use, other works also address
implementation [3] and experimental evaluation [15] issues for hypergraph transversal algorithms.

Gunopulos et al. [12] point out the fact that it is possible tocompute the hypergraph minimal transver-
sals in a levelwise manner. However, no advantage is taken from condensed representations, no specific
algorithm or implementation are provided and no experimental result is given. As mentioned in [1],
being a minimal transversal is not an anti-monotone property. This is what prevents levelwise algorithms
from being efficient. In this paper, we solve this problem by providing an anti-monotone constraint that
can be used to efficiently mine the minimal transversals of a hypergraph.

In the field of knowledge discovery, Mannila and Toivonen [19] define a theory as the set of patterns
satisfying a given property or constraint. The maximal elements of a theory and the minimal elements
which do not belong to the theory constitute the positive andthe negative border of this theory. Mannila
and Toivonen also relate the borders of a theory to the minimal transversals in [19]. They prove that the
negative border of a theory equals the minimal transversalsof the hypergraph composed of the comple-
ments of the patterns of the positive border. By exploiting this property (as a stopping criterion), [12, 21]
propose to compute the positive border of the frequent patterns by using minimal transversals in depth-
first algorithms. We will see in Section 6 how our method can beuseful for improving the computation
of minimal transversals in such cases.

2.2. Preliminaries

2.2.1. Main ideas

Figure 1 outlines our approach. Considering that both databases and hypergraphs can be represented as
boolean matrices, our proposal is to benefit from links between attribute patterns and sets of vertices to
apply a data mining algorithm in order to efficiently computehypergraph minimal transversals. More
precisely, we exhibit a Galois connection on hypergraphs which allows to exploit an anti-monotone
property. Afterwards, we reuse the principle of the algorithm described in [14] which is based on a
levelwise search. We make use of efficient pruning criteria and we show that our algorithm is efficient
on hypergraph hard instances. The originality of this work is to use a pattern extraction algorithm to
compute transversals contrary to the approaches exposed in[12, 21] that aim at discovering interesting
patterns by means of minimal transversals.
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Figure 1. Overview of our approach.

2.2.2. Definitions

This section gives basic definitions for the three fields approached in this article: databases, hypergraphs
and Galois connections.

Databases A databaseD is a relationR between a setA of attributesand a setO of objects: for
a ∈ A, o ∈ O, aR o if and only if the objecto contains the attributea. Table 1 provides an example of a
database with 5 attributes and 6 objects. Apatternis a subset ofA. The frequency of a patternX is the
number of objects inD containingX; it is denoted byF(X). A patternX is γ-frequentif its frequency
is greater than or equal toγ. For instance, the pattern{a1, a3} is 2-frequent because it appears in two
objects (o1 ando6). X is a free pattern if for eachX1 ⊂ X, F(X) < F(X1). In Table 1,{a1, a3}
is not free sinceF({a1}) = 2 = F({a1, a3}). On the contrary, the pattern{a3, a5} is free because
F({a3}) = 4 > F({a3, a5}) = 2 andF({a5}) = 3 > F({a3, a5}) = 2.

Attributes

a1 a2 a3 a4 a5

O
b

je
ct

s

o1 1 1 1 0 0

o2 0 0 1 1 1

o3 0 1 1 0 1

o4 0 1 0 0 1

o5 0 1 0 1 0

o6 1 0 1 0 0

Table 1. An example of a databaseD.
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Hypergraphs A hypergraphH is a pair(V, E) whereV = {v1, v2, ..., vn} is a finite set of vertices and
E = (ei)i∈{1,2,...,m} a set of nonempty subsets ofV called hyperedges such that

⋃

1≤i≤m

ei = V.

An example of a hypergraph both drawn and represented by its adjacency matrix is given in Figure 2. A
subsetT of V is a transversalof H if T intersects each hyperedge ofE . We denote byTr(H) the set of
all transversals ofH:

Tr(H) = {T ⊆ V| for all i ∈ {1, 2, ...,m}, ei ∩ T 6= ∅}.

For instance,{v2, v3, v5} is a transversal of the hypergraph represented in Figure 2. AsubsetT of V
is aminimal transversalof H if T ∈ Tr(H) and if no proper subset ofT is in Tr(H). The set of all
minimal transversals ofH is denoted byMinTr(H). (V,MinTr(H)) is a hypergraph (see [2, p. 43])
called thetransversal hypergraphof H. The maximal size of a minimal transversal ofH is denoted by
t(H), i.e., t(H) = max

T∈MinTr(H)
|T |. In Figure 2,{v2, v3, v5} is not a minimal transversal since{v2, v3}

is a transversal too.{v2, v3} is a minimal transversal because neither{v2} nor{v3} is a transversal.
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e1 1 1 1 0 0

e2 0 0 1 1 1
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e4 0 1 0 0 1

e5 0 1 0 1 0

e6 1 0 1 0 0

Figure 2. An example of a hypergraphH.

Let V ⊆ V be a subset of vertices andE ⊆ E be a subset of hyperedges. We define the set of
hyperedges which contain at least one vertex ofV :

E(V ) = {e ∈ E| ∃v ∈ V with v ∈ e}

and the set of vertices which appear at least in one hyperedgeof E:

V(E) = {v ∈ V| ∃e ∈ E with v ∈ e}.

In Figure 2,E({v2, v5}) = {e1, e2, e3, e4, e5} andV({e4, e5}) = {v2, v4, v5}.
It should be underlined that both datasets and hypergraphs can be represented as boolean matrices.
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Galois connections Let (A,≤1) and(B,≤2) be two partially ordered sets. In the rest of the paper,
we will denote the poset(A,≤1) by A if there is no ambiguity about the partial order≤1. A Galois
connectionbetween(A,≤1) and(B,≤2) consists of two antitone functionsf : A → B andg : B → A
such thatf ◦g andg◦f are extensive, i.e., for ally ∈ B, y ≤2 f ◦g(y) and for allx ∈ A, x ≤1 g◦f(x).
f is theintensionandg theextension.

When used for pattern extraction tasks, the sets2A and2O are ordered by inclusion and the Galois
connection(fD, gD) is defined as follows: for allO ⊆ O, fD(O) = {a ∈ A| for all o ∈ O, aRo} and
for all A ⊆ A, gD(A) = {o ∈ O| for all a ∈ A, aRo}. In Table 1, the extension of{a1, a3} is {o1, o6};
the intension of{o3, o4, o5} is {a2}.

Property 1 enables us to compute the extension when joining several subsets ofB and is given as an
exercise in [7, p. 45].

Property 1. Let (f, g) be a Galois connection between the posets(2A,≤1) and(2B ,≤2). Then for any
family {Vj ⊂ B|j ∈ J }:

g(
⋃

j∈J

Vj) =
⋂

j∈J

g(Vj).

For instance in Table 1, thanks to Property 1, we havegD({a1, a2, a3}) = gD({a1, a3})∩ gD({a2}) and
thusgD({a1, a2, a3}) = {o1} sincegD({a2}) = {o1, o3, o4, o5}.

3. Extension-based approach for computing hypergraph transversals

This section presents the core of our approach to compute minimal transversals. We start by defining a
hypergraph Galois connection, then we specify the key points to build our algorithm: the link between
hypergraphs and pattern extraction, and a characterization of the minimal transversals according to the
previously mentioned Galois connection.

3.1. Hypergraph Galois operators

We define a new Galois connection(fH, gH) associated to a hypergraphH. We will see in Section 4 that
such a connection is required to apply both an anti-monotoneconstraint and the levelwise framework
to the minimal transversal computation. In the rest of the paper, the sets2V and 2E are ordered by
inclusion⊆.

Definition 3.1. The Galois operatorsfH andgH associated to the hypergraphH = (V, E) are:

for all E ∈ 2E , fH(E) = V\V(E)

for all V ∈ 2V , gH(V ) = E\E(V )

For a set of hyperedgesE, fH(E) contains all the vertices that do not appear in any hyperedgeof E. For
a set of verticesV , gH(V ) corresponds to the hyperedges that do not contain any vertexof V . Basically,
this is equivalent to saying thatV is a transversal of the partial hypergraph defined by the hyperedges
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Database with Any Galois Hypergraph with

the connection(fD, gD) connection(f, g) the connection(fH, gH)

(2A,⊆) the power set the poset(B,≥2) (2V ,⊆) the power set

of the attributes of the vertices

(2O,⊆) the power set the poset(A,≥1) (2E ,⊆) the power set

of the objects of the hyperedges

gD: the objects containing g: the extension gH: the hyperedges not covered

a given attribute pattern by a given vertex pattern

the attribute patterns appearing equivalence class the vertex patterns covering

in the same objects the same hyperedges

the missing patterns the sets with the transversals ofH

an empty extension

the free patterns the minimal elements of the minimal transversals of a

the equivalence classes partial hypergraph

the negative border the minimal elements of the minimal transversals

of the present patterns the equivalence class of H

with an empty extension

Table 2. Correspondence between databases, Galois connections and hypergraphs.

E\gH(V ) = E(V ). In Figure 2, the extension of{v1, v3} is {e4, e5} because neitherv1 nor v3 intersects
e4 or e5; the intension of{e1, e3} is {v4} since neithere1 nor e3 containsv4.

Lemma 3.1. The pair(fH, gH) defines a Galois connection between the posets(2E ,⊆) and(2V ,⊆).

Proof:
Let V1 andV2 be in2V , E1 andE2 be in2E such thatV1 ⊆ V2 andE1 ⊆ E2.

It is obvious that the hyperedges ingH(V2) do not contain any vertex ofV1 sogH(V2) ⊆ gH(V1) and
gH is antitone. Similarly, we obtain thatfH is antitone.

By definition, the vertices inV1 do not appear in the hyperedges ofgH(V1) thusV1 ⊆ fH ◦ gH(V1)
andfH ◦ gH is extensive. Similarly, we prove thatgH ◦ fH is extensive too. ut

Specifying the appropriate Galois connection(fH, gH) for the hypergraph case enables us to make an
analogy between databases and hypergraphs, thus to adapt a pattern extraction algorithm for minimal
transversal computation. The next section details this relation.

3.2. Extension and hypergraph transversals

This section characterizes the minimal transversals of a hypergraph thanks to the extension defined in
Section 3.1 and links hypergraphs to databases. Table 2 establishes a correspondence between terms in
Galois connections, databases and hypergraphs. To better understand the analogy with databases, we
will refer to the subsets ofV asvertex patterns.
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It should be noticed that the extensiongH induces an equivalence relation on2V : for all V, V ′ ⊂
V, V ∼ V ′ ⇔ gH(V ) = gH(V ′). This relation enables us to define extension equivalence classes in
the partially ordered set2V (see Definition 3.2). Defined in pattern extraction, such equivalence classes
are called frequency classes because the patterns belonging to the same equivalence class have the same
frequency.

Definition 3.2. The equivalence class of a vertex patternV is denoted byRgH(V ) and is defined as
follows:

RgH(V ) = {V ′ ∈ V|gH(V ′) = gH(V )}.

In the hypergraph from Figure 2,gH({v1, v5}) equals{e5} andRgH({v1, v5}) equals
{{v1, v5}, {v3, v5}, {v1, v3, v5}}.

Transversals characterization Lemma 3.2 proves that the transversals ofH correspond to the vertex
patternsV such that|gH(V )| = 0.

Lemma 3.2. The vertex patternV is a transversal of the hypergraphH if and only if |gH(V )| = 0.

|gH(V )| = 0 means thatV has an empty extension and thus, intersects each hyperedge of the hypergraph
H. In our example,|gH({v2, v3, v5})| equals zero and it was underlined in Section 2.2.2 that{v2, v3, v5}
is a transversal ofH. Note that in data mining, the attribute patterns having an empty extension cor-
respond to patterns that do not appear in any object ofD. Such patterns do not belong to the database
and they are calledmissing patternsin Table 2. Lemma 3.2 leads to Corollary 3.1 that identifies all the
transversals as the elements of the equivalence class containing the vertex pattern{v1, v2, ..., vn}:

Corollary 3.1. RgH({v1, v2, ..., vn}) equalsTr(H) and will be denoted byR∅
gH

.

Proof:
{v1, v2, ..., vn} covers all the hyperedges inE and its equivalence class corresponds to the vertex patterns
having an empty extension. From Lemma 3.2, we have equality with Tr(H). ut

In Figure 2,RgH({v1, v2, v3, v4, v5}) is equal to:

{{v2, v3}, {v2, v4}, {v1, v2, v3}, {v1, v2, v4}, {v1, v4, v5}, {v2, v3, v4}, {v2, v3, v5}, {v2, v4, v5},
{v3, v4, v5}, {v1, v2, v3, v4}, {v1, v2, v3, v5}, {v1, v2, v4, v5}, {v1, v3, v4, v5}, {v2, v3, v4, v5},
{v1, v2, v3, v4, v5}}

and gives all the transversals ofH.

Minimal elements characterization Let us define the minimal elements for any extension equivalence
class:

Definition 3.3. A vertex patternV having no proper subsetV ′ such thatV ′ belongs toRgH(V ) is a
minimal generator.
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For instance, the vertex pattern{v3, v4} is a minimal generator in Figure 2. Actually, no proper
subset of{v3, v4} belongs toRgH({v3, v4}) asgH({v3, v4}) = {e4} differs fromgH({v3}) = {e4, e5}
and fromgH({v4}) = {e1, e3, e4, e6} (see Figure 3). The minimal generators can be characterized
according to the gap between equivalence classes (see Lemma3.3): if a vertex patternV and one of its
subsets have the same extension,V is not a minimal generator.

Lemma 3.3. The vertex patternV is a minimal generator if and only if for allv ∈ V, |gH(V )| <
|gH(V \{v})|.

Proof:
V is a minimal generator if and only if:
for all V ′ ⊂ V , V ′ /∈ RgH(V ) ⇔ for all V ′ ⊂ V , gH(V ′) 6= gH(V )

⇔ for all V ′ ⊂ V , |gH(V ′)| ≥ |gH(V )|
⇔ for all v ∈ V , |gH(V \{v})| ≥ |gH(V )| ut

A minimal generatorV is a minimal transversal of the partial hypergraph defined byE(V ). We will
see in Section 4 how the minimality can be used to reduce the search space and speed up a levelwise
algorithm. Similarly, in the data mining area, thefreepatterns are defined as the minimal elements of the
frequency equivalence classes (see [4, 20]).

Figure 3 shows a sample of the vertex patterns and their extension in Figure 2. As{v3} and{v1, v3}
have the same extension{e4, e5}, they belong to the same equivalence class.R∅

gH
contains at least the

patterns{v2, v3} and{v1, v2, v3}. {v2, v3} is a minimal generator because neither{v2} nor{v3} belongs
toR∅

gH
.

O

O

O

v4v1 v2 v3

e4e5e2e6e2e3e4e5 e1e3e4e6 e1e5e6

v5

v1v2 v1v3 ... v2v3

v1v2v3

e2 e4e5

... ......

Figure 3. Sample of vertex patterns.

Minimal transversals From Corollary 3.1, we deduce thatMinTr(H) is equivalent to the minimal
elements ofR∅

gH
. The previous observations lead to Theorem 3.1 which gives an extension-based char-

acterization ofMinTr(H):

Theorem 3.1. LetH = (V, E) be a hypergraph with the hypergraph Galois connection(fH, gH). V ⊆ V
is in MinTr(H) if and only if:
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1. |gH(V )| = 0;

2. for all v ∈ V, |gH(V )| < |gH(V \{v})|, i.e.,V is a minimal generator.

Proof:
We mentioned in the previous paragraph that a minimal transversal is a minimal generator ofR∅

gH
. Then,

the combination of Lemma 3.2 and Lemma 3.3 immediately proves the result. ut

Theorem 3.1 enables us to enumerate all the minimal transversals of the hypergraph given in Figure 2:

MinTr(H) = {{v2, v3}, {v2, v4}, {v1, v2, v5}, {v1, v4, v5}, {v3, v4, v5}}.

The equivalence given in Theorem 3.1 ensures the correctness and the completeness of the algorithm
MTMINER described in Section 5.

4. Pruning strategy

In this section, we briefly describe the levelwise frameworkand present twopruning propertiesto im-
prove the extraction of the minimal transversals. These properties naturally ensue the characterization of
minimal transversals given in the previous section.

4.1. Significance of pruning in levelwise algorithms

We recall the principle to mine the patterns satisfying a constraintq under the levelwise framework. This
approach applies a breadth-first search, starting from the shortest patterns (i.e., the patterns composed of
one vertex) to the longest patterns statisfying the constraint q. The key idea is to combine this approach
with an anti-monotone constraint with respect to the pattern inclusion. A constraintq is anti-monotone
if and only if for all patternsX andY , q(X) andY ⊆ X impliesq(Y ). Thus, anti-monotonicity results
in an essential pruning criterion under the levelwise framework: if a pattern does not satisfyq, the same
holds for every superset.

4.2. Pruning Criteria

Theorem 3.1 (Section 3.2) identifies the minimal transversals of a hypergraph as the minimal generators
having an empty extension. This characterization leads to the two following pruning criteria. The first
one comes from the anti-monotonicity of the minimality in the equivalence classes defined in Section 3.2.
The second one is used as a stopping criterion.

Anti-Monotonicity of minimality in equivalence classes Property 2 establishes that being a minimal
generator (see Section 3.2) is anti-monotone.

Property 2. The minimality in extension equivalence classes is an anti-monotone property.
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Proof:
Assume thatV is a minimal generator and there isv in V such thatV \{v} is not. Then there isv′ in
V \{v} satisfyinggH(V \{v, v′}) = gH(V \{v}) (Lemma 3.3). We have the following equalities:
gH(V ) = gH(V \{v}) ∩ gH({v}) (Property 1)

= gH(V \{v, v′}) ∩ gH({v})
= gH(V \{v′}) (Property 1)

Since there isv′ in V such thatV \{v′} andV have the same extension,V is not a minimal generator
(Lemma 3.3) and this is in contradiction with our hypothesis. ut

First pruning property As observed in Section 4.1, Property 2 allows to state an important pruning
criterion: if a vertex pattern is not a minimal generator, then none of its supersets is a minimal generator.

Pruning Criterion 1. Let V be a vertex pattern. If there isv ∈ V such that|gH(V )| ≥ |gH(V \{v})|,
then no superset ofV is a minimal transversal ofH.

Proof:
Suppose there isv ∈ V such that|gH(V )| ≥ |gH(V \{v})| (which is equivalent to|gH(V )| = |gH(V \{v})|)
and considerW ∈ 2V such thatV ⊆ W . By using Property 1, we have the following equalities:
gH(W\{v}) = gH(V \{v}) ∩ gH(W\V )

= gH(V ) ∩ gH(W\V )
= gH(W )

We conclude thanks to Theorem 3.1 thatW is not a minimal transversal. ut

Pruning Criterion 1 is a powerful tool to avoid testing uninteresting vertex patterns: a levelwise algorithm
can prune the search space fromV . In Figure 2,{v1, v3} is not a minimal generator since{v1, v3} and
{v3} have the same extension{e4, e5} (see Figure 3). Consequently, all the supersets of{v1, v3} are
pruned thanks to Pruning Criterion 1.

Notice that Property 2 does not depend on the Galois connection. In fact, Pruning Criterion 1 remains
completely true and can be used for any Galois connection. This fact explains why a similar criterion
exists for the freeness constraint.

Second pruning property Obviously, if a vertex patternV is a minimal transversal then its super-
sets are transversals but they cannot be minimal generators. This observation gives the second pruning
property. When computing minimal transversals in a levelwise manner, once a minimal transversal is
encountered, its supersets will not be tested when computing later on.

5. A levelwise algorithm for minimal transversals

In this section, we present our algorithm MTMINER (MT for Minimal Transversals Miner) to compute
the minimal transversals of a hypergraph. MTMINER follows the principle of levelwise algorithms. It
is based on the extension of the Galois connection defined in Section 3.2 and optimized thanks to the
pruning properties exposed in Section 4. We prove that it is correct and complete and we finally give its
theoretical complexity.
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5.1. Outline

Figure 4 schematizes the search space. For the hypergraph given in Figure 2, Figure 3 is a piece of the
search space depicted in Figure 4. The vertex patterns are represented in a lattice and divided into two
groups: those having an empty extension and the others (i.e., the non transversals). MTMINER starts
by covering the minimal generators which are not transversals of the input hypergraphH. Remind that
the search space is reduced thanks to Pruning Criterion 1 since it is sufficient to consider the minimal
generators instead of all the non transversals. Figure 4 illustrates that the minimal transversals stand on
the negative border of the non transversals. The close relationship between negative borders of theories
and minimal transversals was pointed out in [13]. When a vertex pattern satisfies Theorem 3.1, it is a
minimal transversal and the computation stops because the second pruning property holds.

(empty extension)

transversals

minimal

generators
minimal

transversals

non transversals

Figure 4. Search space when computing hypergraph transversals.

5.2. Algorithm MTMINER

This section details the algorithm MTMINER which computes all the minimal transversals for the input
hypergraphH. A vertex pattern which is not a minimal transversal and which is not removed because of
non minimality (Pruning Criterion 1) is agenerator. Only one scan of the hypergraph is needed since it
is possible to compute the extension by intersecting the generators extensions (see Property 1).

Algorithm MTMINER

Input: HypergraphH = (V, E)

Output: Minimal transversals ofH

1. // initialization
Trav := {{v} ∈ V | |gH({v})| = 0}
Gen1 := {{v} ∈ V | |E| > |gH({v})| > 0}
k := 1

2. while Genk 6= ∅ do
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3. for each (V ∪ {v1}, V ∪ {v2}) ∈ Genk × Genk do

// candidate generation (k + 1 vertices)
W := V ∪ {v1} ∪ {v2}
// extension computation by using Property 1
gH(W ) := gH(V ∪ {v1}) ∩ gH(V ∪ {v2})

4. // verification and pruning
i := 1

5. // Pruning Criterion 1
while i ≤ k + 1 and W\{vi} ∈ Genk and |gH(W )| < |gH(W\{vi})| do

i := i + 1
od

6. if i = k + 2 then
// Second pruning property
if |gH(W )| = 0 then Trav = Trav ∪ {W}
elseGenk+1 := Genk+1 ∪ {W}

od
k := k + 1
od

7. return Trav

Genk is the set of generators withk vertices. The minimal transversals are stored inTrav .
In Step 1,Trav is initialized with all the vertices having an empty extension andGen1 is initialized

with the minimal generators with an nonempty extension (Lemma 3.3).
The main loop begins in Step 2: it stops when there is no generator left at levelk. At level k + 1,

candidates are generated by joining two vertex patterns having k − 1 vertices in common. The extension
of a candidateW is computed by intersecting its generators extensions (Property 1). Lemma 3.3 is used
to test whether the candidateW is a minimal generator. IfW is not a minimal generator, this candidate
and all its supersets are deleted by applying Pruning Criterion 1. Step 6 tests whetherW is a transversal
of H with Lemma 3.2. IfW is minimal but is not a transversal, it is added toGenk+1. WhenW is a
minimal generator and a transversal ofH, Theorem 3.1 is used andW is added toTrav .

Theorem 5.1 proves that MTMINER is correct and complete.

Theorem 5.1. The algorithm MTMINER extracts all the minimal transversals from the input hyper-
graphH.

Proof:
Let us prove that a set of verticesW in Trav is a minimal transversal ofH. We test in Step 5 if|g(W )| <
|g(W\{v})| for all v in W , which ensures thatW is a minimal element ofRgH(W ) (Lemma 3.3). Step
6 establishes thatW is a transversal (cf. Lemma 3.2).
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[Completeness] The algorithm MTMINER covers the whole vertices search space thanks to the principle
of the levelwise algorithms. The accuracy of the used pruning criteria (Criterion 1 and second pruning
property) entails the completeness of MTMINER. ut

5.3. Complexity

For each minimal transversalT , MTMINER explores at most2|T | vertex patterns. Consequently, the
maximal number of operations equals: ∑

T∈MinTr(H)

2|T |.

This upper bound is not reached in most of the cases because atlevelk in the lattice2V , for two transver-
salsT1 and T2, the two sublattices often have a nonempty intersection. The vertex patterns of this
intersection are not verified twice.

Because|T | ≤ t(H), we have Theorem 5.2:

Theorem 5.2. The algorithm MTMINER computesMinTr(H) with a time complexity equal to:

O(2t(H) × |MinTr(H)|).

This complexity depends ont(H) and|MinTr(H)| which is the size of the output. The complexity of the
best known algorithm that computes all minimal transversals of a hypergraph, is given in the introduction
and depends on the size of both the input hypergraph and the output. Since we do not know any relation
betweent(H) and the size of the input hypergraph, we cannot compare thesealgorithms in a theoretical
manner. Thus, an experimental comparison is proposed in Section 6. We will also see thatt(H) remains
very small in practice when the hyperedges of the input hypergraph contain a lot of vertices.

6. Experimental evaluation

We compare MTMINER with two prototypes: DUAL and THG. DUAL is described in [3] and is based
on the algorithm [11] with the best theoretical complexity addressing the hypergraph transversal prob-
lem. THG is an improvement of Berge’s algorithm [2, p. 52], it was proven to be efficient in prac-
tice [16]. The implementations were downloaded at urlhttp://rutcor.rutgers.edu/∼boros/IDM/

DualizationCode.html and http://lca.ceid.upatras.gr/∼estavrop/transversal/. MT-
MINER is available at urlhttp://users.info.unicaen.fr/∼chebert/mtminer.html. The first
experiment (Section 6.1) consists in comparing MTMINER to DUAL and THG on random hypergraphs.
The second experiment (Section 6.2) shows how MTMINER enables us to compute the negative border
of a set of frequent patterns, whereas the other prototypes fail. All the tests were performed on a 2.2 GHz
Pentium IV processor with Linux operating system using 3 GB of RAM memory.

6.1. Evaluation on random hypergraphs

In this experiment, the comparison is made on randomly generated hypergraphs based on the Erdős-
Rényi model [10]. We use a parameterp which corresponds to the proportion of1 in the incidence
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matrix of the input hypergraph. The higherp, the larger the hyperedges are and the denser the incidence
matrix is. In data mining, it means that the data are highly correlated.

The first issue consists in studying the computation time according top. We know that the perfor-
mances of MTMINER are closely linked tot(H) (see Section 5.3) and the performances of DUAL to the
size of the output|MinTr(H)|. Although we do not have any evidence of it, we expect that thecar-
dinality of the largest minimal transversalt(H) is high when the incidence matrix of the hypergraph is
sparse. Consequently, sparse hypergraphs represent the most difficult case for MTMINER. Performances
(run-times in seconds) in Table 3 confirm this statement. Note that DUAL outperforms THG for p = 0.1.

p 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

DUAL 326.70 fail fail fail fail fail fail fail 59.29

THG 9.56 117.15 1, 015.26 7, 272.22 fail fail fail fail 7, 308.28

MTMINER 0.25 4.14 48.72 530.02 fail fail fail fail fail

t(H) 3 5 7 8 ? ? ? ? 41

|MinTr(H)| 26, 939 339, 372 2, 634, 205 16, 237, 137 ? ? ? ? 4, 396

Table 3. Run-time performances with|V| = 50, |E| = 1, 000 andp between0.9 and0.1.

On the contrary, on dense hypergraphs (whenp ranges from0.9 to 0.6), MTMINER clearly outper-
forms THG. The prototype DUAL fails except forp = 0.9. All the prototypes fail whenp is varying
between0.5 and0.2. For such values ofp, we believe that the number of minimal transversals is high
and they tend to be very large.

The second issue is to show the efficiency of MTMINER with respect to DUAL and THG according
to the number of hyperedges. Table 4 points out the run-time benefit brought by MTMINER (we fix
p = 0.8). For instance, when|E| = 20, 000, THG needs about 30 hours to extract the7, 628, 650
minimal transversals, while MTMINER needs169 seconds (DUAL fails).

|E| 200 400 600 800 1, 000 2, 000

DUAL 297.80 1, 042.72 1, 865.88 2, 681.69 4, 143.26 17, 854.75

THG 4.11 15.82 40.01 67.18 120.03 672.07

MTMINER 0.52 1.17 2.11 2.75 4.17 10.67

|E| 3, 000 5, 000 7, 000 10, 000 20, 000

DUAL fail fail fail fail fail

THG 1, 871.67 4, 540.11 10, 400.55 26, 324.78 106, 623.39

MTMINER 16.67 38.28 57.94 88.64 168.72

Table 4. Run-time performances with|V| = 50, p = 0.8 and|E| between200 and20, 000.

6.2. Computing the negative border of a theory

In Section 2.1, we briefly described the problem of finding thenegative border of a set of frequent patterns
by using hypergraph minimal transversals [12, 21]. More precisely, the depth-first algorithm for finding
frequent patterns presented in [12] includes a step consisting in computing the minimal transversals of
the complements of the patterns belonging to the positive border. We want to test the behavior of DUAL ,
THG and MTMINER for this step.
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We conducted experiments on benchmarks coming from the UCI repository, a summary and an
access to the benchmarks are provided at the urlhttp://www.ics.uci.edu/∼mlearn/MLSummary.

html. We used three benchmarks :MUSHROOM which is a8, 124 × 120 data,LETTER-RECOGNITION
a 20, 000 × 74 data andPUMSB a 49, 046 × 7, 118. We first compute the positive border of frequent
patterns. Then we determine the complements of the sets of the positive border. At last, we apply the
three prototypes on the complements of the patterns of the positive border. The run-times in seconds
for the three benchmarks are given in Table 5, Table 6 and Table 7. In the tables, we also provide the
following parameters: the frequency threshold, the numberof hyperedges|E| and the density of the input
hypergraphH, the maximal size of a minimal transversalt(H) and the size of the output|MinTr(H)|.

On the benchmarkMUSHROOM, MTMINER clearly outperforms DUAL and THG. We think that the
density of the input hypergraphs is the major reason why MTMINER is so efficient. Since the patterns
in the positive border do not contain a lot of attributes, their complements are very large and the input
hypergraphs are very dense. ForLETTER-RECOGNITION, DUAL fails whatever the frequency threshold.
MTMINER spends one second to mine almost 80,000 minimal transversals while THG needs almost half
an hour. Let us note that mining frequent patterns inPUMSB requires a high frequency threshold. For this
benchmark, MTMINER is the only prototype which succeeds in computing the minimal transversals.

frequency 800 600 400 200 100 50 30 10 1

DUAL 53.52 82.09 278.17 840.89 2, 248.50 5, 647.58 12, 059.95 35, 612.74 3, 477.25

THG 0.60 1.52 5.10 29.90 117.87 404.11 1, 128.39 3, 161.14 103.30

MTMINER 0.27 0.58 1.55 4.48 13.48 30.49 48.21 94.98 85.89

density 0.731 0.736 0.741 0.753 0.763 0.771 0.778 0.782 0.773

|E| 573 918 1, 477 3, 111 5, 776 9, 857 15, 232 30, 809 8, 124

t(H) 6 6 7 7 8 9 9 10 7

|MinTr(H)| 6, 244 8, 235 16, 375 31, 331 51, 678 77, 990 100, 573 118, 234 22, 294

Table 5. Run-time performances for the benchmarkMUSHROOM.

frequency 5, 000 3000 1, 000 800 600 400 300 200 100

DUAL fail fail fail fail fail fail fail fail fail

THG 0.01 0.21 39.54 106.96 371.01 1, 750.11 5, 096.74 13, 891.36 77, 468.80

MTMINER 0 0 0.13 0.21 0.42 1.09 1.89 4.48 15.36

density 0.972 0.962 0.94 0.937 0.932 0.925 0.921 0.9147 0.905

|E| 79 347 5, 579 8, 979 15, 779 33, 015 52, 554 96, 355 228, 278

t(H) 3 4 7 7 8 9 9 11 11

|MinTr(H)| 524 1, 851 16, 961 25, 298 43, 302 79, 479 121, 307 207, 246 453, 280

Table 6. Run-time performances for the benchmarkLETTER-RECOGNITION.

Finally, these experiments highlight the twofold advantages of MTMINER: the minimal transversal
extraction becomes feasible for dense hypergraphs and whenother algorithms do not fail, MTMINER is
much faster.
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frequency 48, 000 45, 000 40, 000 35, 000

DUAL fail fail fail fail

THG fail fail fail fail

MTMINER 0.01 0.28 4.34 24.78

density 0.9996 0.9993 0.9989 0.9985

|E| 3 144 2, 341 10, 417

t(H) 1 5 9 13

|MinTr(H)| 7, 120 7, 483 14, 085 41, 020

Table 7. Run-time performances for the benchmarkPUMSB.

7. Conclusion and discussion

In this paper, we linked the hypergraph transversal problemto the pattern extraction domain, enabling
to exploit an anti-monotone property and to benefit from efficient pruning methods. Due to the large
number of interesting patterns and the need of completeness, data mining algorithms are designed to
face very large outputs. As the number of minimal transversals is often sizable (see Section 6), it is not
surprising that a pattern dedicated algorithm can help in solving this problem. Thus, we proposed a new
algorithm based on the above mentioned techniques for computing hypergraph minimal transversals.
We proved that our algorithm becomes an order of magnitude faster than other algorithms and enables
us to efficiently compute minimal transversals especially in dense hypergraphs. As said in Section 2.1,
many works address the hypergraph transversal problem whenthe hyperedge size is bounded. On the
contrary, our approach furnishes a complementary means of computing hypergraph transversals when
the hyperedge size is high.

This work could be extended in many directions. From a practical point of view, it seems that to
use only one algorithm is not sufficient to efficiently compute the minimal transversals for any input
hypergraph. Sparse hypergraphs are likely to contain few and long minimal transversals and this is
suitable for approaches like DUAL ’s one. In dense hypergraphs, these approaches fail becausethe number
of minimal transversals is often large, whereas levelwise methods like MTMINER succeed. This is the
reason why it would be interesting to better characterize the cases where each prototype is efficient.

In Section 3.2, we showed that MTMINER covers all the present patterns in a database to compute the
minimal transversals. In [18], the average number of frequent patterns (for a given frequency) is studied.
We think that this work could be applied to provide:

• the average number of minimal transversals : the minimal transversals of a hypergraph can be
regarded as patterns having a frequency equal to zero (also called missing patterns in Table 2), the
average number of minimal transversal could be deduced fromthis observation;

• the cardinality of the largest minimal transversal(s)t(H).

As these parameters are involved in the theoretical complexity of MT MINER and DUAL , their estimation
would allow to compare them in a theoretical manner.
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