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Abstract. Finding hypergraph transversals is a major algorithmiaasshich was shown having
many connections with the data mining area. In this papeddiyning a new Galois connection, we
show that this problem is closely related to the mining of¢becalledcondensed representations
of frequent patterns. This data mining formalization eeahls to benefit from efficient algorithms
dedicated to the extraction of condensed representatMare precisely, we demonstrate how it is
possible to use the levelwise framework to improve the hyggrh minimal transversal computation
by exploiting an anti-monotone constraint to safely prureedearch space. We propose a new algo-
rithm MTMINER to extract minimal transversals and provide experimerag/gig that our method

is efficient in practice.

Keywords: Data mining, Hypergraph minimal transversals, Levelwisetework, Condensed rep-
resentations.

1. Introduction

Hypergraphs can be thought as a generalization of graphsewihe edges, called hyperedges, connect
more than two vertices. Minimal transversals a set of vertices intersecting all the hyperedges which
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is minimal with respect to the inclusion. Computing hypamr minimal transversals is a major research
guestion because having many applications in computencei®]. However, this is a difficult task from
the complexity point of view partly because the number ofimal transversals can be exponentially
large in the size of the input hypergraph. The complexity oélifig all the minimal transversals of
a hypergraph still remains an open issue and it is not knowrifyen output polynomial total time
algorithm exists. To alleviate the writing, we generallyibthe word minimal and we say hypergraph
transversals for hypergraph minimal transversals in thjsep

The hypergraph transversal problem has many connectiahsdata mining issues [13]. Mannila
and Toivonen proved that there is a close relationship batvilee borders of theories (see Section 2.1
for a short definition) and the minimal transversals [19]hds been shown that minimal transversals
are linked to useful patterns called emerging patterns lwhighlight contrasts between classes [1]. Re-
cently, minimal transversals have been efficiently useeéltie different clustering results for visualizing
transactional data for knowledge discovery [8].

In this paper, we revisit the search of minimal transverbglsaking advantage of recent progress
on pattern condensed representations [5]. Let us briefigdate basic background on condensed rep-
resentations. A pattern condensed representation givestlaesis of large datasets and highlights the
correlations embedded in the data. One advantage of thisagpis to provide powerful safe pruning
criteria during the mining and thus improve the efficiencyatsforithms. Usually, pattern condensed
representations address the minimal frequency conseaant if there are also condensed representa-
tions for frequency-based measures [22]. A patterfteiguentif it occurs in the dataset more than a
user-specified threshold. Condensed representationsaidnt patterns restrict the mining to specific
patterns like the free (or key) patterns or the closed pattpt, 20]. These patterns partition the search
space in equivalence classes, the free patterns are th@matielements (with respect to the pattern
inclusion) and the closed patterns are their maximal elésném practice, mining either all the free pat-
terns or the closed patterns is enough to infer the frequehayy pattern Freenessias one interesting
property: its anti-monotonicity with respect to the pattérclusion (a constraing is anti-monotonef
and only if for all patternsX andY’, ¢(X) andY C X impliesq(Y")). It gives a safe pruning criterion
for levelwise search in the pattern lattice [19, 4].

Our key idea is to reuse the concept of condensed represanfatore precisely the freeness) for
minimal transversal computation. Our main contributiores tavofold. First, thanks to the definition of
a new Galois connection, we set the hypergraph transversa in the levelwise framework. From this
formalization, we deduce an anti-monotone property whitdibées us to safely prune the search space
to get minimal transversals. Second, we provide a new dlgorM TMINER that efficiently computes all
the minimal transversals of a given hypergraph. Thus, werxgntally demonstrate that a data mining
algorithm can solve instances better than the algorithrh\ith the best theoretical complexity for the
hypergraph transversal problem.

The rest of the paper is organized as follows. Section 2 disirelated work, summarizes the
main points of this work and gives preliminary definitionsec8on 3 presents the core of our method
to compute hypergraph minimal transversals. The definitiba hypergraph Galois connection and
an extension-based characterization of minimal tranal®m@re given. Section 4 details the pruning
strategy based on an anti-monotone property to reduce déinetsgpace and make the minimal transversal
computation efficient. Our algorithm MMINER, based on the above mentioned Galois connection, is
presented in Section 5. Section 6 gives an experimentalayah of MTMINER. We end this paper by
a discussion about further research in Section 7.
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2. Context

2.1. Background

Considerable efforts have been devoted to the search ofrairiransversals [2, 11, 1, 16]. In [11],
Fredman and Khachiyan give an algorithm with a time compjesgual toP(n) + s'°2() wheren is

the number of vertices of the input hypergragh,s a polynomial ancs is the combined size of the
input and the output. It is, to the best of our knowledge, tigerithm having the lowest complexity
for finding the minimal transversals of a given hypergraphanyiworks [6, 23, 17] focus on the case
when the hyperedge size is bounded by a constant. In thig,papanake no restriction on the input
hypergraph. Due to the gap between theoretical compleritlypaactical use, other works also address
implementation [3] and experimental evaluation [15] issfee hypergraph transversal algorithms.

Gunopulos et al. [12] point out the fact that it is possibledmpute the hypergraph minimal transver-
sals in a levelwise manner. However, no advantage is takem dondensed representations, no specific
algorithm or implementation are provided and no experimergsult is given. As mentioned in [1],
being a minimal transversal is not an anti-monotone prgp&his is what prevents levelwise algorithms
from being efficient. In this paper, we solve this problem bguviding an anti-monotone constraint that
can be used to efficiently mine the minimal transversals ofpeetgraph.

In the field of knowledge discovery, Mannila and Toivonen][d&fine a theory as the set of patterns
satisfying a given property or constraint. The maximal edata of a theory and the minimal elements
which do not belong to the theory constitute the positive thiechegative border of this theory. Mannila
and Toivonen also relate the borders of a theory to the mirtimasversals in [19]. They prove that the
negative border of a theory equals the minimal transverdaise hypergraph composed of the comple-
ments of the patterns of the positive border. By exploitinig property (as a stopping criterion), [12, 21]
propose to compute the positive border of the frequent pettey using minimal transversals in depth-
first algorithms. We will see in Section 6 how our method cambeful for improving the computation
of minimal transversals in such cases.

2.2. Preliminaries
2.2.1. Main ideas

Figure 1 outlines our approach. Considering that both datzdand hypergraphs can be represented as
boolean matrices, our proposal is to benefit from links betwattribute patterns and sets of vertices to
apply a data mining algorithm in order to efficiently compbigergraph minimal transversals. More
precisely, we exhibit a Galois connection on hypergraphghvhllows to exploit an anti-monotone
property. Afterwards, we reuse the principle of the aldwnitdescribed in [14] which is based on a
levelwise search. We make use of efficient pruning critenich \&e show that our algorithm is efficient

on hypergraph hard instances. The originality of this warlta use a pattern extraction algorithm to
compute transversals contrary to the approaches expo$#d,i@l] that aim at discovering interesting
patterns by means of minimal transversals.
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Figure 1. Overview of our approach.

2.2.2. Definitions

This section gives basic definitions for the three fields appined in this article: databases, hypergraphs
and Galois connections.

Databases A databaseD is a relationR between a sef of attributesand a setO of objects for

a € A,0€ O, aRoifand only if the objecb contains the attribute. Table 1 provides an example of a
database with 5 attributes and 6 objectspaiternis a subset ofd. The frequency of a patterX is the
number of objects ifD containingX; it is denoted byF(X). A patternX is ~-frequentif its frequency

is greater than or equal tp For instance, the pattefu,, a3} is 2-frequent because it appears in two
objects 6; andog). X is afree pattern if for eachX; C X, F(X) < F(X;). In Table 1,{a1,as}

is not free sinceF({a1}) = 2 = F({a1,as}). On the contrary, the pattefus,as} is free because
F({as}) =4> F({as,as}) = 2andF({as}) = 3 > F({as,as}) = 2.

Attributes

al as asz | a4 | as

oo |1 ]1|1]07]0
Slog| 00| 1|11
Sloslol1]1]o]1
Ololol1]olo1
os| 0] 1l0]1]0
o6 | 10| 1]01]0

Table 1. An example of a databaBe
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Hypergraphs A hypergraph is a pair(V, £) whereV = {vy,v9, ..., v, } is afinite set of vertices and
& = (€i)ief1,2,..,m}y @ set of nonempty subsetsWfcalled hyperedges such that

LJ 6i=3V.

1<i<m

An example of a hypergraph both drawn and represented bgjasency matrix is given in Figure 2. A
subsetl” of V is atransversalof H if T intersects each hyperedge&fWe denote byT'r(H) the set of
all transversals of{:

Tr(H) ={T C V|foralliec {1,2,...,m}, e,NT # (}.

For instance{vq, v3,v5} is a transversal of the hypergraph represented in Figure 8ub&etT” of V

is aminimal transversabf H if T' € Tr(H) and if no proper subset &f is in Tr(H). The set of all
minimal transversals of{ is denoted byMinTr(H). (V, MinTr(H)) is a hypergraph (see [2, p. 43])
called thetransversal hypergrapbf H. The maximal size of a minimal transversalfgfis denoted by

t(H), i.e. t(H) = Te]\fl?jﬁ(?{) |T|. In Figure 2,{v2,vs, v5} iS not a minimal transversal sindes, vs}

is a transversal tod.vy, v3} is @ minimal transversal because neitfies} nor {vs} is a transversal.

Vertices

V1 | V2 | V3 | V4 | Uy
eil 1111010

(7]
©le| OO0 |1]1]1
Bles|o]1]1]o]1
Sle 01001
Tlelol1]lol1]o0
es| 1101010

Figure 2.  An example of a hypergraph

Let V. C V be a subset of vertices arid C £ be a subset of hyperedges. We define the set of
hyperedges which contain at least one vertek of

EWV)={ee€ & veVwithvee}
and the set of vertices which appear at least in one hype@fdge
V(E) ={v e V|3Jee Ewithv € e}.

In Figure 2,E({va,v5}) = {e1,e2,e3,¢e4,e5} andV({eq, e5}) = {v2, v, v5}.
It should be underlined that both datasets and hypergraphberepresented as boolean matrices.
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Galois connections Let (A, <;) and (B, <,) be two partially ordered sets. In the rest of the paper,
we will denote the posetA, <;) by A if there is no ambiguity about the partial ordef. A Galois
connectiorbetween( A, <;) and(B, <) consists of two antitone functions: A — Bandg: B — A
such thatf og andgo f are extensive, i.e., forall € B, y <, fog(y) andforallz € A, = <; go f(x).
f is theintensionandg the extension

When used for pattern extraction tasks, the 8étsand2© are ordered by inclusion and the Galois
connection( fp, gp) is defined as follows: for alD C O, fp(O) = {a € A|forallo € O,aRo} and
forall A C A, gp(A) ={o € Offoralla € A,aRo}. In Table 1, the extension gfu;, as} is {01, 06};
the intension of 03, 04,05} is {a2}.

Property 1 enables us to compute the extension when joileveral subsets aB and is given as an
exercise in [7, p. 45].

Property 1. Let (f,g) be a Galois connection between the pogets <;) and (25, <,). Then for any
family {V; C B|j € J}:

g(lJ Vi) =) 9V

JjeJ JjeJ

For instance in Table 1, thanks to Property 1, we hav€{ai, as,a3}) = gp({a1,a3}) Ngp({az}) and
thUSgp({al, as, ag}) = {01} sincegp({ag}) = {017 03, 04, 05}.

3. Extension-based approach for computing hypergraph trasversals

This section presents the core of our approach to computenalitransversals. We start by defining a
hypergraph Galois connection, then we specify the key pdambuild our algorithm: the link between
hypergraphs and pattern extraction, and a charactemzafithe minimal transversals according to the
previously mentioned Galois connection.

3.1. Hypergraph Galois operators

We define a new Galois connecti¢fy, g,) associated to a hypergraph We will see in Section 4 that
such a connection is required to apply both an anti-monotamstraint and the levelwise framework
to the minimal transversal computation. In the rest of thpepathe set®” and 2¢ are ordered by
inclusionC.

Definition 3.1. The Galois operatorg;; andgy, associated to the hypergraph= (), £) are:
forall E € 2°, fx(E) = V\V(E)
forall vV e 2Y, gn(V) =E\E(V)
For a set of hyperedgds, f»(F) contains all the vertices that do not appear in any hyperetige For

a set of vertice§’, g (V') corresponds to the hyperedges that do not contain any vafriéxBasically,
this is equivalent to saying thaf is a transversal of the partial hypergraph defined by the regges
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Database with Any Galois Hypergraph with
the connectiofi fp, gp) connectionf, g) the connectior f, g»)
(24, C) the power set the poset B, >2) (2Y, ©) the power set
of the attributes of the vertices
(29, C) the power set the poset A, >) (2¢, C) the power set
of the objects of the hyperedges
gp: the objects containing g: the extension gx: the hyperedges not covered
a given attribute pattern by a given vertex pattern
the attribute patterns appearing equivalence class the vertex patterns covering
in the same objects the same hyperedges
the missing patterns the sets with the transversals @f(
an empty extension
the free patterns the minimal elements of| the minimal transversals of a
the equivalence classes| partial hypergraph
the negative border the minimal elements of| the minimal transversals
of the present patterns the equivalence class of H
with an empty extension

Table 2. Correspondence between databases, Galois comsesntd hypergraphs.

E\gr (V) = E(V). In Figure 2, the extension §fv1,vs} is {e4, e5} because neither, norvs intersects
e4 Or e5; the intension of ey, es} is {v4} Since neithee; nor ez containsvy.

Lemma 3.1. The pair(f, g») defines a Galois connection between the po&étsC) and(2Y, C).

Proof:
Let V; andV; be in2Y, E; and E, be in2€ such thatl; C Vi andE; C Fs.

It is obvious that the hyperedgesgn (V2) do not contain any vertex f; sogy(V2) C gx (V1) and
gn is antitone. Similarly, we obtain thdt, is antitone.

By definition, the vertices iv; do not appear in the hyperedgesgef(V1) thusVi C fr 0 gi (V1)
and fy; o gy is extensive. Similarly, we prove that; o f5, is extensive too. O

Specifying the appropriate Galois connectigfy, g»¢) for the hypergraph case enables us to make an
analogy between databases and hypergraphs, thus to adatiein gxtraction algorithm for minimal
transversal computation. The next section details thaioel.

3.2. Extension and hypergraph transversals

This section characterizes the minimal transversals ofpeitgyaph thanks to the extension defined in
Section 3.1 and links hypergraphs to databases. Table Rlisb&s a correspondence between terms in
Galois connections, databases and hypergraphs. To batlerstand the analogy with databases, we
will refer to the subsets of asvertex patterns
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It should be noticed that the extensign induces an equivalence relation 2H: for all V,V’ C
V, V.~V & gy(V) = gu(V'). This relation enables us to define extension equivalerasses in
the partially ordered s&t” (see Definition 3.2). Defined in pattern extraction, suchivedence classes
are called frequency classes because the patterns bejangime same equivalence class have the same
frequency.

Definition 3.2. The equivalence class of a vertex pattéfris denoted byR,, (V') and is defined as
follows:

R (V) = {V' € V|gu (V') = gn(V)}.

In the hypergraph from Figure 23 ({v1,vs}) equals{es} andR,, ({vi,vs}) equals
{{v1,vs}, {vs, vs}, {v1,v3, 05} }-

Transversals characterization Lemma 3.2 proves that the transversal$fforrespond to the vertex
patternsV’ such thaigx (V)| = 0.

Lemma 3.2. The vertex patterfty’ is a transversal of the hypergraphif and only if |g» (V)| = 0.

lgr (V)| = 0 means that” has an empty extension and thus, intersects each hyperettgehypergraph

H. In our example|gy ({v2, v3,v5})| equals zero and it was underlined in Section 2.2.2{batvs, v5 }

is a transversal of{. Note that in data mining, the attribute patterns having raptg extension cor-
respond to patterns that do not appear in any obje@.o8uch patterns do not belong to the database
and they are callethissing patternsn Table 2. Lemma 3.2 leads to Corollary 3.1 that identifiés$hed
transversals as the elements of the equivalence classrdogtthe vertex patterfuy, va, ..., vy, }:

Corollary 3.1. Ry, ({v1,v2, ..., v, }) equalsTr(H) and will be denoted bR? .

Proof:
{v1,v9, ..., v, } covers all the hyperedges éhand its equivalence class corresponds to the vertex psattern
having an empty extension. From Lemma 3.2, we have equaitity T (H). O

In Figure 2,R,, ({v1,v2,v3,v4,v5}) is equal to:

{{v2,v3}, {va, va}, {v1, v, v3}, {v1, V2, va}, {v1, v, v5}, {v2,v3, v}, {v2,v3,v5}, {v2, v, 5},
{U3) V4, U5}a {Ulav2a U3, /04}) {/Ula V2, V3, /05}) {/Ula V2, V4, U5}a {’Ul,’Ug, V4, U5}a {UQa V3, V4, /05})
{v1,v2,v3,v4,v5}}

and gives all the transversals bt

Minimal elements characterization Let us define the minimal elements for any extension equicale
class:

Definition 3.3. A vertex patternV having no proper subsét’ such thatV’’ belongs toR,,, (V) is a
minimal generator
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For instance, the vertex pattefms, v4} is a minimal generator in Figure 2. Actually, no proper
subset of{vs, v4} belongs toR,,, ({v3, va}) asgy ({vs,va}) = {ea} differs from gy ({vs}) = {es, e5}
and fromgy ({vs}) = {e1,e3,e4,¢6} (see Figure 3). The minimal generators can be characterized
according to the gap between equivalence classes (see L8B)nd a vertex patter’y’ and one of its
subsets have the same extensidris not a minimal generator.

Lemma 3.3. The vertex patteri/ is a minimal generator if and only if for att € V. |gx(V)| <

g1 (VA{v})].

Proof:
V' is a minimal generator if and only if:
forall V! c V,V' ¢ R, (V) < forall V! C V, gn(V') # gnu(V)
forall V! c V, gn(V')| > lgn (V)
<forallv eV, |gyn(V\{v})| > |gn(V)] O

A minimal generatoil” is a minimal transversal of the partial hypergraph defined @iy). We will
see in Section 4 how the minimality can be used to reduce thelsespace and speed up a levelwise
algorithm. Similarly, in the data mining area, tiee patterns are defined as the minimal elements of the
frequency equivalence classes (see [4, 20]).

Figure 3 shows a sample of the vertex patterns and their @rtem Figure 2. A§v3} and{v;,v3}
have the same extensiday, e5 }, they belong to the same equivalence cIER%H contains at least the
patt%rns{vz, vs} and{vy,va, v3}. {ve, v3} is a minimal generator because neitfies} nor {vs} belongs
toRy,,

vy vy Uz v U
€2€3€4€5 €266 . €4€5.€1€364€5 €1€5€6
\\ ’A\\ ’,\\\
N [N RN
> \\ ! \\ !
\\\/’ \\/’
V1V2 V1U3 V2U3
€9 L €4€5
V1U2V3

Figure 3. Sample of vertex patterns.

Minimal transversals From Corollary 3.1, we deduce thafinTr(H) is equivalent to the minimal
elements ongH. The previous observations lead to Theorem 3.1 which gimesxgension-based char-
acterization ofMinTr(H):

Theorem 3.1. LetH = (V, £) be a hypergraph with the hypergraph Galois connedtfen g»). V C V
is in MinTr(H) if and only if:
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L lgn(V)[ =0;

2. forallv e V, |gn(V)| < [gn(V\{v})|, i.e.,V is a minimal generator.

Proof:
We mentioned in the previous paragraph that a minimal tenss¥is a minimal generator ”ﬁng. Then,
the combination of Lemma 3.2 and Lemma 3.3 immediately ke result. O

Theorem 3.1 enables us to enumerate all the minimal traseigenf the hypergraph given in Figure 2:

MinTr(H) = {{v2,v3}, {va,va}, {v1,v2, 05}, {v1,v4, 05}, {v3, 04,05} }.

The equivalence given in Theorem 3.1 ensures the correctras the completeness of the algorithm
MTMINER described in Section 5.

4. Pruning strategy

In this section, we briefly describe the levelwise framewankl present tw@runing propertiego im-
prove the extraction of the minimal transversals. Thespgntes naturally ensue the characterization of
minimal transversals given in the previous section.

4.1. Significance of pruning in levelwise algorithms

We recall the principle to mine the patterns satisfying ast@intq under the levelwise framework. This
approach applies a breadth-first search, starting fromhbeest patterns (i.e., the patterns composed of
one vertex) to the longest patterns statisfying the coimstga The key idea is to combine this approach
with an anti-monotone constraint with respect to the patteclusion. A constraing is anti-monotone

if and only if for all patternsX andY’, ¢(X) andY C X impliesq(Y"). Thus, anti-monotonicity results

in an essential pruning criterion under the levelwise fraomk: if a pattern does not satisfy the same
holds for every superset.

4.2. Pruning Criteria

Theorem 3.1 (Section 3.2) identifies the minimal trans\ysrsha hypergraph as the minimal generators
having an empty extension. This characterization leadsddwo following pruning criteria. The first
one comes from the anti-monotonicity of the minimality il tiquivalence classes defined in Section 3.2.
The second one is used as a stopping criterion.

Anti-Monotonicity of minimality in equivalence classes Property 2 establishes that being a minimal
generator (see Section 3.2) is anti-monotone.

Property 2. The minimality in extension equivalence classes is anmotiotone property.
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Proof:
Assume thal/ is a minimal generator and theredsn V such thatV'\{v} is not. Then there is’ in
V\{v} satisfyinggy (V\{v,v'}) = g (V\{v}) (Lemma 3.3). We have the following equalities:

gr(V) = gn(V\{v}) N gn({v}) (Property 1)

= gn(V\{v,v'}) N gn({v})

= gn(V\{v'}) (Property 1)
Since there i3/ in V such thati/\{v'} andV have the same extensioW, is not a minimal generator
(Lemma 3.3) and this is in contradiction with our hypothesis O

First pruning property  As observed in Section 4.1, Property 2 allows to state an itapbpruning
criterion: if a vertex pattern is not a minimal generatoertimone of its supersets is a minimal generator.

Pruning Criterion 1. Let V' be a vertex pattern. If there isc V' such thatigy (V)| > |gn(V\{v})|,
then no superset df is a minimal transversal ¢f.

Proof:
Suppose there isc€ V such thatgy (V)| > |gn(V\{v})| (Which is equivalent togy (V)| = |gx(V\{v})])
and consideiV < 2Y such thafi” C . By using Property 1, we have the following equalities:
gr(W\{v}) = gn(V\{v}) Ngn(W\V)

=gn(V) N gn(W\V)

= gnu(W)
We conclude thanks to Theorem 3.1 thtis not a minimal transversal. O

Pruning Criterion 1 is a powerful tool to avoid testing ueirgsting vertex patterns: a levelwise algorithm
can prune the search space frdmIn Figure 2,{v1, v3} is not a minimal generator sinde, v3} and
{vs} have the same extensidmy, es} (see Figure 3). Consequently, all the superset§vpfuvs} are
pruned thanks to Pruning Criterion 1.

Notice that Property 2 does not depend on the Galois commmedti fact, Pruning Criterion 1 remains
completely true and can be used for any Galois connectioris faht explains why a similar criterion
exists for the freeness constraint.

Second pruning property Obviously, if a vertex patter’ is a minimal transversal then its super-
sets are transversals but they cannot be minimal generdthis observation gives the second pruning
property. When computing minimal transversals in a levedwinanner, once a minimal transversal is
encountered, its supersets will not be tested when contplaiar on.

5. Alevelwise algorithm for minimal transversals

In this section, we present our algorithm MINER (MT for Minimal Transversals Miner) to compute
the minimal transversals of a hypergraph. MIKER follows the principle of levelwise algorithms. It
is based on the extension of the Galois connection define@dtidh 3.2 and optimized thanks to the
pruning properties exposed in Section 4. We prove that ibiisect and complete and we finally give its
theoretical complexity.
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5.1. Outline

Figure 4 schematizes the search space. For the hypergnestigiFigure 2, Figure 3 is a piece of the
search space depicted in Figure 4. The vertex patterns presented in a lattice and divided into two
groups: those having an empty extension and the otherstlieenon transversals). MAINER starts

by covering the minimal generators which are not transleisiesthe input hypergraphi. Remind that
the search space is reduced thanks to Pruning Criterioncg #ins sufficient to consider the minimal
generators instead of all the non transversals. Figureigtiites that the minimal transversals stand on
the negative border of the non transversals. The closeare$ip between negative borders of theories
and minimal transversals was pointed out in [13]. When aexepiattern satisfies Theorem 3.1, it is a
minimal transversal and the computation stops becauseto®ng pruning property holds.

- minimal
minimal

generators

transversals

transversals

(empty extension)

Figure 4. Search space when computing hypergraph trardsers

5.2. Algorithm MTMINER

This section details the algorithm MAINER which computes all the minimal transversals for the input
hypergrapt. A vertex pattern which is not a minimal transversal and Wiénot removed because of
non minimality (Pruning Criterion 1) is generator Only one scan of the hypergraph is needed since it
is possible to compute the extension by intersecting therg¢ors extensions (see Property 1).

Algorithm MTMINER
Input: HypergraphH = (V, €)
Output: Minimal transversals of{

1. /l'initialization
Trav := {{v} € V| |gn({v})| = 0}
gem = {{v} e V|I&] > |gn({v})] > 0}
=1

2. while Gen,, # () do
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w

for each (V U{v1},V U{v2}) € Geny, x Gen;, do

/I candidate generationk(+ 1 vertices)

W =Vu {Ul} U {’Ug}

/I extension computation by using Property 1
gr(W) := gn(V U{v1}) Ngn(V U{va})

4. /I verification and pruning
1:=1

5. // Pruning Criterion 1
while i < k+ 1 and W\{v;} € Geny and |gx(W)| < |gn(W\{v;})| do
1:=14+1
od

6. if i =k + 2then
/I Second pruning property
if |g(W)| = 0then Trav = Trav U {W}
elseGengy1 := Geng1 U{W}
od
k=k+1
od

7. return Trav

Geny, is the set of generators withvertices. The minimal transversals are stored’iav.

In Step 1,7rav is initialized with all the vertices having an empty extemsandGen; is initialized
with the minimal generators with an nonempty extension (iren3.3).

The main loop begins in Step 2: it stops when there is no gaeeft at levelk. At level k& + 1,
candidates are generated by joining two vertex patterns@pé\v— 1 vertices in common. The extension
of a candidatdV is computed by intersecting its generators extensionpé?ry1). Lemma 3.3 is used
to test whether the candidal® is a minimal generator. I/ is not a minimal generator, this candidate
and all its supersets are deleted by applying Pruning @ritelr. Step 6 tests whethé&¥ is a transversal
of H with Lemma 3.2. Ifi¥/ is minimal but is not a transversal, it is addedden;;. WhenW is a
minimal generator and a transversaltof Theorem 3.1 is used andl is added toTrav.

Theorem 5.1 proves that MINER is correct and complete.

Theorem 5.1. The algorithm MTMINER extracts all the minimal transversals from the input hyper-
graph.

Proof:

Let us prove that a set of vertic# in Trav is a minimal transversal dft. We test in Step 5ifg(W)| <
lg(W\{v})| for all v in W, which ensures thal’” is a minimal element oR,,, (W) (Lemma 3.3). Step
6 establishes thal’ is a transversal (cf. Lemma 3.2).
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[Completeness] The algorithm MAINER covers the whole vertices search space thanks to the gancip
of the levelwise algorithms. The accuracy of the used pieititeria (Criterion 1 and second pruning
property) entails the completeness of MINER. O

5.3. Complexity

For each minimal transversdl, MTMINER explores at mos2!”! vertex patterns. Consequently, the
maximal number of operations equals:
> o

TeMinTr(H)

This upper bound is not reached in most of the cases becaleselit in the lattice2”, for two transver-
salsT; and T, the two sublattices often have a nonempty intersectione Vdrtex patterns of this
intersection are not verified twice.

BecauséT'| < t(H), we have Theorem 5.2:

Theorem 5.2. The algorithm MTINER computesMinTr(H) with a time complexity equal to:

02! x |MinTr(H)|).

This complexity depends ait) and| MinTr(H)| which is the size of the output. The complexity of the
best known algorithm that computes all minimal transvarséb hypergraph, is given in the introduction
and depends on the size of both the input hypergraph and thato&ince we do not know any relation
between:(H) and the size of the input hypergraph, we cannot compare #igsgthms in a theoretical
manner. Thus, an experimental comparison is proposed tio8dc We will also see tha{ ) remains
very small in practice when the hyperedges of the input lgnagh contain a lot of vertices.

6. Experimental evaluation

We compare MMINER with two prototypes: WAL and THG. DUAL is described in [3] and is based
on the algorithm [11] with the best theoretical complexitideessing the hypergraph transversal prob-
lem. THG is an improvement of Berge’s algorithm [2, p. 52], it was mouvo be efficient in prac-
tice [16]. The implementations were downloaded attitlp: //rutcor . rutgers.edu/~boros/IDM/
DualizationCode.html and http://lca.ceid.upatras.gr/~estavrop/transversal/. MT-
MINER is available at urlhttp://users.info.unicaen.fr/~chebert/mtminer.html. The first
experiment (Section 6.1) consists in comparing MNER to DUAL and THG on random hypergraphs.
The second experiment (Section 6.2) shows howMWNEER enables us to compute the negative border
of a set of frequent patterns, whereas the other prototygile Ml the tests were performed on a 2.2 GHz
Pentium IV processor with Linux operating system using 3 GBRAM memory.

6.1. Evaluation on random hypergraphs

In this experiment, the comparison is made on randomly géeérhypergraphs based on the Erd6s-
Rényi model [10]. We use a parametemhich corresponds to the proportion dfin the incidence
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matrix of the input hypergraph. The higherthe larger the hyperedges are and the denser the incidence
matrix is. In data mining, it means that the data are highlyatated.

The first issue consists in studying the computation timewtcg top. We know that the perfor-
mances of MMINER are closely linked ta(H) (see Section 5.3) and the performances oD to the
size of the outputMinTr(H)|. Although we do not have any evidence of it, we expect thatctre
dinality of the largest minimal transversdlH) is high when the incidence matrix of the hypergraph is
sparse. Consequently, sparse hypergraphs represent shdiffioult case for MMINER. Performances
(run-times in seconds) in Table 3 confirm this statementeNtwt DUAL outperforms HG for p = 0.1.

p 0.9 08 0.7 0.6 05]04]03]02 0.1
DUAL 326.70 | fail fail fail fail | fail | fail | fail | 59.29
THG 9.56 117.15 1,015.26 7,272.22 fail | fail | fail | fail | 7,308.28
MTMINER 0.25 4.14 48.72 530.02 | fail | fail | fail | fail fail
t(H) 3 5 7 8 R 41
|MinTr(H)| || 26,939 | 339,372 | 2,634,205 | 16,237,137 | ? | 2 | 2 | ? | 4,39

Table 3.  Run-time performances witH| = 50, |£| = 1,000 andp betweer0.9 and0.1.

On the contrary, on dense hypergraphs (wheanges fron0.9 to 0.6), MTMINER clearly outper-
forms THG. The prototype DAL fails except forp = 0.9. All the prototypes fail whem is varying
between0.5 and0.2. For such values gf, we believe that the number of minimal transversals is high
and they tend to be very large.

The second issue is to show the efficiency of MWER with respect to DAL and THG according
to the number of hyperedges. Table 4 points out the run-tiereetit brought by MMINER (we fix
p = 0.8). For instance, whef€| = 20,000, THG needs about 30 hours to extract the28, 650
minimal transversals, while MMIINER needsl69 seconds (DAL fails).

€] 200 400 600 800 1,000 2,000
DuAL 297.80 1,042.72 1, 865.88 2,681.69 4,143.26 17,854.75
THG 4.11 15.82 40.01 67.18 120.03 672.07

MTMINER 0.52 1.17 2.11 2.75 4.17 10.67

|€] 3,000 5,000 7,000 10,000 20, 000
DuAL fail fail fail fail fail
THG 1,871.67 | 4,540.11 | 10,400.55 | 26,324.78 | 106, 623.39

MTMINER 16.67 38.28 57.94 88.64 168.72

Table 4. Run-time performances witfi| = 50, p = 0.8 and|&| betweer200 and20, 000.

6.2. Computing the negative border of a theory

In Section 2.1, we briefly described the problem of findingribgative border of a set of frequent patterns
by using hypergraph minimal transversals [12, 21]. Moreigedy, the depth-first algorithm for finding
frequent patterns presented in [12] includes a step camgist computing the minimal transversals of
the complements of the patterns belonging to the positivddso\We want to test the behavior obBL,
THG and MTMINER for this step.



430 C. Hébert et al. / A Data Mining Formalization to Improve Hypgraph Transversal Computation

We conducted experiments on benchmarks coming from the Bisitory, a summary and an
access to the benchmarks are provided at thattrp: //www.ics.uci.edu/~mlearn/MLSummary.
html. We used three benchmarkMUSHROOM which is a8,124 x 120 data, LETTER-RECOGNITION
a 20,000 x 74 data andPUMSB a 49,046 x 7,118. We first compute the positive border of frequent
patterns. Then we determine the complements of the sete gfdsitive border. At last, we apply the
three prototypes on the complements of the patterns of teitiyborder. The run-times in seconds
for the three benchmarks are given in Table 5, Table 6 andeTabln the tables, we also provide the
following parameters: the frequency threshold, the nurbbyperedge$€| and the density of the input
hypergrapt, the maximal size of a minimal transvergél) and the size of the outpld/in Tr(H)|.

On the benchmarkUSHROOM, MTMINER clearly outperforms DAL and THG. We think that the
density of the input hypergraphs is the major reason whyMMER is so efficient. Since the patterns
in the positive border do not contain a lot of attributesjrtiiemplements are very large and the input
hypergraphs are very dense. E®&TTER-RECOGNITION, DUAL fails whatever the frequency threshold.
MTMINER spends one second to mine almost 80,000 minimal transsex$élle THG needs almost half
an hour. Let us note that mining frequent patternBUMSB requires a high frequency threshold. For this
benchmark, M MINER is the only prototype which succeeds in computing the mihinaasversals.

frequency || 800 | 600 | 400 200 100 50 30 10 1
DuAL 53.52(82.09|278.17|840.89 (2, 248.50|5, 647.58(12,059.95(35,612.74| 3,477.25
THG 0.60 | 1.52 | 5.10 | 29.90 | 117.87 | 404.11 | 1,128.39 | 3,161.14 | 103.30

MTMINER || 0.27 | 0.58 | 1.55 | 4.48 13.48 30.49 48.21 94.98 85.89
density [[0.731(0.736| 0.741 | 0.753 | 0.763 0.771 0.778 0.782 0.773
€] 573 | 918 | 1,477 | 3,111 | 5,776 | 9,857 15,232 | 30,809 8,124

H(H) 6 | 6 7 7 8 9 9 10 7
|MinTr(H)||6, 244]8, 235]16, 375]31, 331] 51,678 | 77,990 | 100,573 | 118,234 | 22,294

Table 5. Run-time performances for the benchmai$HR00N.

frequency || 5,000 | 3000 1,000 800 600 400 300 200 100
DuAL fail fail fail fail fail fail fail fail fail
THG 0.01 0.21 39.54 106.96 | 371.01 | 1,750.11 | 5,096.74 | 13,891.36 | 77,468.80

MTMINER 0 0 0.13 0.21 0.42 1.09 1.89 4.48 15.36

density 0.972 | 0.962 0.94 0.937 0.932 0.925 0.921 0.9147 0.905
€] 79 347 5,579 8,979 | 15,779 | 33,015 52,554 96, 355 228,278
t(H) 3 4 7 7 8 9 9 11 11
| MinTr(H)| 524 1,851 | 16,961 | 25,298 | 43,302 | 79,479 121, 307 207, 246 453,280

Table 6. Run-time performances for the benchmMarkTER-RECOGNITION.

Finally, these experiments highlight the twofold advaetagf MTMINER: the minimal transversal
extraction becomes feasible for dense hypergraphs and @thenalgorithms do not fail, MNMINER is
much faster.



C. Hébert et al. / A Data Mining Formalization to Improve Hygraph Transversal Computation 431

frequency 48,000 | 45,000 | 40,000 | 35,000
DuAL fail fail fail fail
THG fail fail fail fail

MTMINER 0.01 0.28 4.34 24.78

density 0.9996 | 0.9993 | 0.9989 | 0.9985

€] 3 144 | 2,341 | 10,417
t(H) 1 5 9 13

|[MinTr(H)| || 7,120 | 7,483 | 14,085 | 41,020

Table 7.  Run-time performances for the benchnranksB.

7. Conclusion and discussion

In this paper, we linked the hypergraph transversal prolitethe pattern extraction domain, enabling
to exploit an anti-monotone property and to benefit from iffit pruning methods. Due to the large

number of interesting patterns and the need of completeass mining algorithms are designed to
face very large outputs. As the number of minimal transyerisaoften sizable (see Section 6), it is not
surprising that a pattern dedicated algorithm can help lwvirgpthis problem. Thus, we proposed a new
algorithm based on the above mentioned techniques for ctimgphypergraph minimal transversals.

We proved that our algorithm becomes an order of magnitusterfahan other algorithms and enables
us to efficiently compute minimal transversals especiallgénse hypergraphs. As said in Section 2.1,
many works address the hypergraph transversal problem thieehyperedge size is bounded. On the
contrary, our approach furnishes a complementary meansropueting hypergraph transversals when
the hyperedge size is high.

This work could be extended in many directions. From a prattoint of view, it seems that to
use only one algorithm is not sufficient to efficiently comgpthhe minimal transversals for any input
hypergraph. Sparse hypergraphs are likely to contain fedvlang minimal transversals and this is
suitable for approaches likeUAL’s one. In dense hypergraphs, these approaches fail betteusember
of minimal transversals is often large, whereas levelwisthads like MTMINER succeed. This is the
reason why it would be interesting to better characterieecttses where each prototype is efficient.

In Section 3.2, we showed that MiTNER covers all the present patterns in a database to compute the
minimal transversals. In [18], the average number of fragpatterns (for a given frequency) is studied.
We think that this work could be applied to provide:

e the average number of minimal transversals : the minimaistrarsals of a hypergraph can be
regarded as patterns having a frequency equal to zero @lsd enissing patterns in Table 2), the
average number of minimal transversal could be deduced thobservation;

e the cardinality of the largest minimal transversat($¥).

As these parameters are involved in the theoretical coritplekM T MINER and DUAL, their estimation
would allow to compare them in a theoretical manner.
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