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Abstract: Biomedical named entity recognition (NER) is a challenging 
problem. In this paper, we show that mining techniques, such as sequential 
pattern mining and sequential rule mining, can be useful to tackle this problem 
but present some limitations. We demonstrate and analyse these limitations and 
introduce a new kind of pattern called LSR pattern that offers an excellent 
trade-off between the high precision of sequential rules and the high recall of 
sequential patterns. We formalise the LSR pattern mining problem first. Then 
we show how LSR patterns enable us to successfully tackle biomedical NER 
problems. We report experiments carried out on real datasets that underline the 
relevance of our proposition. 
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1 Introduction 

In current scientific, industrial or business areas, one of the critical needs is to derive 
knowledge from huge datasets or text collections. This task is at the core of the 
knowledge discovery in database (KDD) area. In particular, a large part of the biological 
information is available in natural language in research publications, technical reports, 
websites and other text documents. A critical challenge is then to extract relevant and 
useful knowledge dispersed in such text collections. Lots of efforts have been made such 
as designing efficient tools to tackle large datasets and the discovery of patterns (i.e., 
relationships in the data) of potential interest to the user. Text mining in general and 
information extraction (IE) in particular are rapidly becoming an essential component of 
various bio-applications. These techniques and natural language processing (NLP) have 
been widely applied to extract and exploit background knowledge from biomedical texts. 
Among many tasks, a crucial issue is the annotation of a large amount of genetic 
information. IE and NLP aim at processing accurate parsing to extract specific 
knowledge such as named entities (e.g., gene, protein) and relationships between the 
recognised entities (e.g., gene-gene interactions, biological functions). The need of 
linguistic resources (biological databases, ontologies and IE rules such as grammars or 
patterns) is a common feature of the methods provided by the literature. Difficulties are 
well-known: multi-sense words, no formal criterion, multi-word terms and variations in 
gene/protein names. These linguistic issues are often handled using rules. But, except 
very few attempts (Califf and Mooney, 1999; Smith et al., 2008), such rules are manually 
elaborated and texts, which can be processed are necessarily specific and limited. 
Furthermore, machine learning (ML) based methods such as support vector machines, 
conditional random fields, etc., (Smith et al., 2008) need many features and their 
outcomes are not really understandable by a user. In this case, using them is not 
satisfactory. Indeed, we are interested in discovering knowledge, which can be easily 
managed and used in NLP systems in the form of linguistic patterns or rules. One of the 
strengths is the ability to judge, modify, enhance and improve patterns by a linguistic 
expert. Although this point is not further addressed here, ultimate understandability 
makes an important feature of the proposed methodology. Moreover, the method can be 
straightforwardly applied to any domain without additional effort to develop custom 
features or hand-crafted rules. 

In this paper, we focus on the automated recognition of named entities in general and 
gene and protein names in particular. Even though this problem has already been tackled 
by a great range of various methods (see Section 5), it still remains a challenging research 
issue. We experimentally prove that the pattern mining approach is able to distinguish 
subtle relationships in text collections to highlight named entities. Sequential patterns 
[also referred to as sequences in Srikant and Agrawal (1996)] and sequential rules [also 
referred to as episode rules in Mannila et al. (1997)] are the basis of pattern mining 
techniques from texts because they take into account the order between the elements of 
texts. For text entity recognition, the experiments carried out in Section 2 show that 
sequences can provide suitable scores in recall whereas sequential rules show higher 
precision. Using only sequential patterns or only sequential rules are not enough to get 
sufficient recall and precision scores. Our key idea in this paper is to take benefit from 
synergic action of pattern and rule mining techniques. Patterns can hit a large spectrum of 
potentially interesting phrases while rules bring necessary precision. This synergy is 
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further reinforced by simultaneous application of itemset and sequential mining. 
Although texts must primarily be treated as sequences (of words) otherwise a large 
portion of information is lost, a pertinent disregard for word order can clarify the context 
of the core sequence. Figure 1 organises the four affined mining tasks. Despite their 
common grounds, we are not aware of any other work that combines their strengths in the 
way we do. 

Figure 1 Sequential and non-sequential mining tasks 

 

We propose a generic approach to automatically discover IE rules for the named entity 
recognition (NER) problem. Our main contribution is to define a method to automatically 
derive suitable patterns recognising gene and protein names. For that purpose, we have 
designed a new kind of patterns, left-sequence-right (LSR) patterns taking into account 
the surrounding context of a sequence and relaxing the order constraint around the 
sequence. These patterns provide a way to contextualise and model the neighbourhood 
around a sequence. They exploit the main strength of both sequences and sequential 
rules. Our approach is entirely automatic so that various texts, including their updates, 
can be handled. Furthermore, it can be applied to raw text and the discovered rules can 
easily be understood by the end-users. 

2 Motivating example 

Biomedical NER aims at identifying the boundary of a substring and then mapping the 
substring to a predefined category (e.g., gene or disease). Having a training corpus in 
which named entities are tagged, our goal is to automatically learn extraction rules that 
can then be applied to untagged text in order to discover named entities. 

Table 1 is an example of tagged sentences that we examine in order to discover 
extraction rules. In these sentences, named entities are tagged in bold with surrounding 
〈…〉. In this example, we focus on the discovery of gene names. In this section, we show 
that using pattern mining techniques is promising to automatically discover extraction 
rules of gene names. 
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Table 1 An example of tagged sentences from BioCreative corpus 

s1 Comparisons of the four operon control regions studied indicate that the 〈NarL heptamers〉 
are arranged with diverse orientations and spacing. 

s2 Hydroxypropyl methacrylate, a new water-miscible embedding medium for electron 
microscopy. 

s3 〈Tctex-1〉 binding required the first 19 amino acids of Fyn and integrity of two lysine 
residues within this sequence that were previously shown to be important for Fyn 
interactions with the immunoreceptor tyrosine-based 〈activation motifs〉 of 〈lymphocyte 
Ag receptors〉. 

s4 Closure of an open high below-knee guillotine amputation wound using a skin-stretching 
device. 

Prior to pattern mining application, linguistic preprocessing tasks must be carried out. 
The corpus has to be tokenised and then it can be stemmed. There are works devoted to 
this issue such as Schmid (1994). In this paper, we do not focus on the preprocessing of 
the corpus and we use corpus sentences that are already tokenised. All substrings that are 
tagged as gene names are labelled with a unique label AGENE as shown in Table 2. 
Table 2 Transformed sentences to support pattern mining techniques 

s1 Comparisons of the four operon control regions studied indicate that the AGENE are 
arranged with diverse orientations and spacing. 

s2 Hydroxypropyl methacrylate, a new water-miscible embedding medium for electron 
microscopy. 

s3 AGENE binding required the first 19 amino acids of Fyn and integrity of two lysine 
residues within this sequence that were previously shown to be important for Fyn 
interactions with the immunoreceptor tyrosine-based AGENE of AGENE. 

s4 Closure of an open high below-knee guillotine amputation wound using a skin-stretching 
device. 

It should be noticed that the order of the words within the sentence is primordial in the 
NER problem since we want to discover boundaries that delimit named entities. The 
order relation that we considered is the order of the tokens within the sentences. A text 
sentence is thus seen as a sequence of tokens or stemmas. 

The discovery of association rules cannot be straightforwardly applied in this  
problem because such rules do not take order relation into account. That is why we use 
sequence-based pattern mining techniques. As preliminary experiments, we applied two 
pattern mining techniques: 

• Sequential pattern mining to discover sequences that contain at least one token 
AGENE and that frequently occur in the data with respect to a frequency constraint 
called minsup (minimum support threshold, where the support is simply the number 
of sentences in which the patterns appear). We can then try to match these specific 
patterns to the text sentences in order to discover gene names. As an example, the 
discovered sequence 1 2 3 4, , , ,w w AGENE w w  can then be applied in texts. If 

1 2,w w  and 3 4,,w w  are matched in a sentence, then the piece of sentence 

between 1 2,w w  and 3 4,w w  is tagged as a gene name. 
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• Sequential rule mining considering an additional constraint called confidence 
threshold that enables us to discover implications (rules) between elements within 
the sequences. Thus, discovered rules must satisfy both conditions: minimum 
support threshold and minimum confidence threshold. Confidence of a rule X → Y 
can be interpreted as an estimate of the probability P(Y | X), the probability that a 
sentence, containing X contains also Y after X. The confidence threshold draws the 
difference between sequential patterns and sequential rules. Indeed, a sequential 
pattern is a frequent pattern but no interrelation between elements of the sequence is 
measured. As an example, the sequence the AGENE can be frequent on the dataset. 
However, there is no implication between the and AGENE. Indeed, many words 
different from AGENE appear after the in texts. So, the confidence threshold is not 
likely to be satisfied for the rule the → AGENE. While if AGENE appears nearly all 
the times after the sequence of words the overexpression of, then we could expect to 
have the rule the overexpression of → AGENE satisfying the confidence threshold. 
In the NER problem, the purpose is to discover rules where the if-part is a sequence 
of tokens and the then-part is the special token AGENE. These rules enable us to 
identify the left context of a gene name. By inverting the order relation, other rules 
can be inferred and the right context can also be identified. Then a pair of rules can 
be applied to detect the presence of a named entity and then to define its left and 
right boundaries. For instance, 1 1 2 3, ,= →R w w w AGENE  and 

1 2 3, ,′ ′ ′= ←rR AGENE w w w  can be matched to the sentence 

1 2 3 3 2 1... ...′ ′ ′w w w XYZw w w  where XYZ is then tagged as a gene name. 

In order to define extraction rules that can be applied in text, we put some time 
constraints on the sequential patterns and sequential rules that we want to mine. Indeed, 
we want to discover frequent sequences of contiguous words to use the discovered 
patterns and rules as regular expressions in text. 

To measure the relevancy of sequential patterns and sequential rules for the NER 
problem, we performed experiments on three different datasets. We used two well-known 
corpora from the literature that have frequently been used as benchmark in several papers 
and challenges: GeneTag from Genia dataset by Tanabe et al. (2005) and BioCreative 
dataset from Yeh et al. (2005) (the best F-score for gene/protein name extraction on these 
corpora are respectively 77.8% and 80%). Furthermore, we consider a very large corpus 
to fully benefit from scalability of the proposed pattern mining techniques. This corpus, 
called Abstracts, clearly demonstrates that this work handles very large datasets. It 
contains a set of 35,192 abstracts (305,192 sentences, 44.2 MB of data) collected 
automatically from NCBI website (http://www.ncbi.nlm.nih.gov). It is a raw text in 
which each abstract can be seen as a paragraph, the gene and protein name occurrences 
have been automatically annotated. 228,985 sentences contain at least one gene/protein 
name. The annotation process is a straightforward projection of terms from a dictionary, 
which has been learned by Charnois et al. (2006). 

We separately applied sequential pattern and rule mining techniques to recognise 
gene and protein names in these three corpora. For the evaluation, we used a ten-fold 
cross-validation to partition each initial dataset in a training set and in a testing set. 
Unfortunately, these techniques did not lead to good results for NER problems as the 
following experiments show: 
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• Graphs from Figures 2(a), 3(a) and 4(a) report the recall and the precision of 
sequential patterns for gene recognition on the different datasets. We can see that the 
sequential pattern technique provides very good recall results. Sentences that contain 
a named entity are widely covered by these patterns. However, these patterns suffer 
from a lack of precision. Indeed, they cause too many false positives. In numerous 
cases, sequential patterns match with sentences that do not contain a named entity 
and then unfortunately identify a word or a group of words as a named entity. As an 
example, the sequential pattern 〈AGENE expression〉 enables us the discovery of 
many gene names but it also engenders the detection of false positives like ‘this 
gene’ or ‘the’ in sentences containing ‘this gene expression’ or ‘the expression’. 

• Graphs from Figures 2(b), 3(b) and 4(b) report the recall and the precision of 
sequential rules for gene recognition on the different datasets. These curves show 
that the sequential rule technique provides a good precision by virtue of the 
confidence measure but the recall is too low. Indeed, discovered sequential rules do 
not correctly cover sentences that contain a named entity in Figures 2(b) and 3(b). It 
is due to the fact that many rules are not taken into account because they do not 
respect the confidence threshold. Note that the precision in Figure 3(b) is not defined 
when absolute support threshold is set to 50; indeed, the recall is equal to 0% in this 
case. The third corpus Abstracts [Figure 4(b)] shows a different behaviour as it is 
automatically annotated and the annotation is known to capture the regular gene 
name occurrences while irregular ones might be omitted. Consequently, the number 
of false negatives is likely higher than the two other corpora. 

It should be noticed that the precision rate seems to stay stable when the support 
threshold changes except when recall becomes equal to 0% as in Figure 3(b). It is 

explained by the definition of the precision rate ⎛ ⎞=⎜ ⎟+⎝ ⎠
r

TP
P

TP FP
: when the support 

threshold becomes lower, the recall rates increase. So, the number of true positives 
increases but the number of false positives increases as well. As a consequence, the ratio 

+
TP

TP FP
 cannot be straightforwardly altered by changes of the support threshold. 

These experiments clearly show the limitations of frequent pattern mining technique 
for the problem of NER. On the one hand, sequential patterns offer a good coverage of 
sentences that contain a named entity (high recall) but lead to the detection of too many 
false positives (low precision). On the other hand, sequential rules provide high precision 
scores but too low recall. It would be very interesting to make a trade-off between the 
high precision of sequential rules and the high recall of sequential patterns and to profit 
from advantages from these kinds of patterns without their limitations. From this 
empirical study, we propose in this paper the LSR patterns that aim at characterising a 
sequence by its neighbourhood. LSR patterns combine sequential pattern mining and 
itemset mining by relaxing the order constraint around frequent sequential patterns. The 
surrounding context can then be used to check the relevancy of the pattern and thus, 
reduce the detection of false positives while taking advantage of the good coverage of 
sequential patterns. 

In the rest of the paper, we define LSR patterns and describe how to mine such 
patterns. We also show how to use them in NER problems. 
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Figure 2 (a) sequential pattern mining (b) sequential rule mining ( )0.75=mincon f  for the NER 
problem according to Genia dataset 
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Figure 3 (a) sequential pattern mining (b) sequential rule mining ( )0.75=mincon f  for the NER 
problem according to BioCreative dataset 
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Figure 4 (a) sequential pattern mining (b) sequential rule mining ( )0.75mincon f =  for the NER 
problem according to Abstracts dataset 

  
(a) 

 
(b) 

3 Our proposal: LSR patterns 

Before defining LSR patterns, their extraction and their application to NER problems, let 
us introduce some preliminary concepts related to sequences and constraints. 

3.1 Preliminary definitions 

Let { }1 2, ,...,=I ne e e  be a set of items. A sequence 1 2, ,...,= ks i i i  is an ordered list of 
items. A sequential pattern is simply a sequence. A data sequence S  is a sequence with 
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time stamps associated to each of its elements. More precisely, a data sequence S  is a list 
( ) ( ) ( )1 1 2 2, , , ,..., ,m mt j t j t j  where 1 2< < ... < mt t t  are time stamps and 1 2, ,..., mj j j   

are items. Given a sequential pattern 1 2, ,..., ,= ks i i i  a data sequence 

( ) ( ) ( )1 1 2 2, , , ,..., ,= k ko u i u i u i  is an occurrence of s  in a data sequence S  if all 

elements of o  are in .S  For instance, ( ) ( )1, , 4,a b  is an occurrence of the sequential 

pattern ,=s a b  in data sequence ( ) ( ) ( ) ( )1, , 2, , 4, , 6, .=S a c b b  

A sequence database SDB  is a set of tuples ( ),sid S  where sid  is a sequence-id and 
S  a data sequence. A data sequence S  is said to contain a sequential pattern ,s  if s  has 
at least one occurrence in .S  The support of a sequential pattern s  in a sequence 
database SDB  is the number of data sequences of SDB  that contain .s  

Given a minimum support threshold ,minsup  the goal of mining sequential patterns 
on a sequence database SDB  is to find the complete set of sequences whose support is 
greater than or equal to .minsup  

Pattern mining involves different challenges, such as designing efficient tools to 
tackle large datasets and to select patterns of potential interest. The constraint-based 
pattern mining framework is a powerful paradigm to discover new highly valuable 
knowledge (see Ng et al., 1998). Constraints allow user to focus on the most promising 
knowledge by reducing the number of extracted patterns to those of potential interest. 
There are now generic approaches to discover patterns and sequential patterns under 
constraints (e.g., De Raedt et al., 2002; Soulet and Crémilleux, 2005; Pei et al., 2002; 
Garofalakis et al., 1999; Leleu et al., 2003). Note that constraint-based pattern mining 
challenges two major problems in pattern mining: effectiveness and efficiency. Indeed, 
mining may lead to knowledge flooding with patterns uninteresting to users and it often 
takes substantial processing power for mining the complete set of patterns in large 
databases. So, constraints can be used to enhance both the quality of discovered patterns 
and the mining process. 

Let constraint C  for a sequential pattern s  be a Boolean function ( ).C s  A set of 

constraints { }1 2, ,...,=C nC C C  for a sequential pattern s  is then the conjunction of all 

Boolean functions ( )iC s  from .C� Then, given a set of constraints ,C  the problem of 
constraint-based sequential pattern mining is to find the complete set of sequential 
patterns satisfying every condition iC  from .C� 

Note that even if the support condition is a constraint, it does not belong to .C� Indeed, 
pattern mining is based on this key condition and C� models additional constraints 
different from frequency constraint. There are various types of constraints such as 
syntactic, length, duration and gap constraints, see Pei et al. (2002). 

3.2 LSR pattern: a new kind of pattern 

As we have noticed, sequences and sequential rules present some non-negligible 
limitations for NER problem in biomedical data. In order to take advantage of the high 
recall of sequences and improve their precision, we propose a new type of pattern called 
LSR pattern. They enable us to characterise a sequence with itemsets representing its 
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surrounding context. Indeed, the key idea is to relax the order constraint around a 
sequence in order to model left and right neighbourhood of a sequence, thanks to 
itemsets. 

Definition 3.1: (LSR) A LSR pattern x  is a triplet ( ), ,=x l s r  where: 

• s  is a sequential pattern 

• l  and r  are sets of items. 

LSR patterns go further than the result of a combination between a sequence  
and two itemsets. Indeed, such patterns provide a way to contextualise a sequence,  
thanks to its neighbourhood. Thus, itemsets l  and r  provide a way to model 
neighbourhood around sequence .s  As an example, consider an LSR  
pattern { } { }( )1 , , , , ,=x the AGENE gene with associated  where { }=l  and 

{ }, ,=r gene with associated  which means that these words are in the right 
neighbourhood of the sequence the AGENE. 

The order relation constraint is relaxed around frequent sequential patterns in data 
sequences in order to extract frequent itemsets that model the neighbourhood of the 
sequence and contextualise it in the data sequences. To formalise the extraction of 
frequent LSR patterns, we need to introduce the following definitions. 

Contrary to an itemset that occurs at most once in a transaction in the itemset mining 
problem, a sequence may appear several times in a data sequence (see example below). 
Consequently, for a same data sequence, there are different ways to identify the 
neighbourhood of a sequence within the data sequence. In order to exhibit the most 
representative itemsets that model neighbourhood, we introduce the notion of ‘compact 
occurrence of s  in a data sequence’. 

Definition 3.2: (compact occurrence) Given a sequential pattern 1 2, ,..., ,= ks i i i  a set of 
constraints C  and a data sequence ,S  then an occurrence co  of s  in ,S  where 

( ) ( ) ( )1 1 2 2, , , ,..., ,=c k ko t i t i t i  is a compact occurrence of s  in S  if the following 

conditions hold: 

• co  satisfies C  

• there is no occurrence ( ) ( ) ( )1 1 2 2, , , ,..., ,′ ′ ′ ′= k ko t i t i t i  of s  in S  such that ′ ≠ co o  

and ′o  satisfies C  and 1 1′≤t t  and { }2,..., , .′∀ ∈ ≤α αα k t t  

This definition enables to focus on the minimal pieces of the data sequence S  that 
contain the sequence .s  Indeed, a data sequence S  can contain several compact 
occurrences of a sequence .s  Compact occurrences have similar semantics to ‘minimal 
occurrences’ from Mannila et al. (1997). 

As an example, given 0,= /C�  the data sequence ( ) ( ) ( ) ( ) ( ) ( )1, , 2, , 3, , 4, , 5, , 7, ,=S a c b d a a  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )8, , 10, , 12, , 14, , 15, , 16, , 18, , 20,b e f a g h b c  contains three different 

compact occurrences of , :=s a b  
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1 ( ) ( )1, , 3,a b  

2 ( ) ( )7, , 8,a b  

3 ( ) ( )14, , 18, .a b  

Note that ( ) ( )1, , 18,a b  is not a compact occurrence of s  in S  since it is not minimal. 
If we add a maximal gap constraint _ 2=max gap  to C  meaning that the maximal 

time gap between consecutive items of the sequence s  is 2, then S  contains two 
compact occurrences of s : ( ) ( )1, , 3,a b  and ( ) ( )7, , 8, .a b  

Since a data sequence can contain several compact occurrences of ,s  we speak of the 
thi  compact occurrence of s  in S  (denoted by i

co ) where i  refers to order of 
appearance of the compact occurrence within the data sequence. According to the 
previous example, where ( ) ( )0, 1, , 3, ,= /C� a b  ( ) ( )7, , 8,a b  and ( ) ( )14, , 18,a b  are 
respectively the first, second and third compact occurrences of s  in .S  

In order to define a way to identify neighbourhood with itemsets, we have to define 
the notion of the prefix of a thi  compact occurrence. 

Definition 3.3: (prefix of an occurrence) Let i
co  be the th i  compact occurrence of s  in 

,S  the prefix of ico  in S  is equal to the subsequence of S  starting at the beginning of S  

and ending strictly before the first item of .ico  

In our example, where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1, , 2, , 3, , 4, , 5, , 7, , 8, , 10, , 12, , 14, ,=S a c b d a a b e f a  

( ) ( ) ( ) ( )15, , 16, , 18, , 20,g h b c  is the input sequence, ,s a b=  and 0,= /C�  we have: 

• the prefix of the first compact occurrence 1
co  of s  in S  is equal to 〈〉 

• the prefix of 2
co  is equal to ( ) ( ) ( ) ( ) ( )1, , 2, , 3, , 4, , 5,a c b d a  

• the prefix of 3
co  is equal to ( ) ( ) ( ) ( ) ( ) ( ) ( )1, , 2, , 3, , 4, , 5, , 7, , 8, ,a c b d a a b  

( ) ( )10, , 12,e f  

In the same way, we introduce the notion of suffix of a thi  compact occurrence in a data 
sequence. 

Definition 3.4: (suffix of an occurrence) Let i
co  be the thi  compact occurrence of s  in 

,S  the suffix of ico  in S  is the subsequence of S  starting just after the last item of ico  to 
the end of .S  

According to our example where ,s a b=  and 0,= /C�  we have the following suffixes: 
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• the suffix of the first compact occurrence 1
co  of s  in S  is equal to 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4, 5, , 7, , 8, , 10, , 12, , 14, , 15, , 16, , 18, , 20,d a a b e f a g h b c  

• suffix of 2
co  is equal to ( ) ( ) ( ) ( ) ( ) ( ) ( )10, , 12, , 14, , 15, , 16, , 18, , 20,e f a g h b c  

• suffix of 3
co  is equal to ( )20, .c  

In order to delimit the range of the neighbourhood around compact occurrences, we 
introduce a parameter RN  to consider only items having time-stamps sufficiently close 
to compact occurrences (absolute difference between item time-stamp and time-stamp of 
the closest element of a compact occurrence must not be greater than RN ). This 
constraint is taken into account in the prefix and the suffix of the thi  compact occurrence 
of s  in .S  Indeed, only items which respect neighbourhood range RN  to i

co  are 
returned. 

According to our example, given , ,s a b=  0= /C�  and 5 :RN =  

• ( ), ,i
c Rprefix o S N =  and ( ) ( ) ( ) ( ) ( ), , 4, , 5, , 7, , 8,i

c Rsuffix o S N d a a b=  

• ( ) ( ) ( ) ( ) ( )2 , , 2, , 3, , 4, , 5,c Rprefix o S N c b d a=  and 

( ) ( ) ( )2 , , 10, , 12,c Rsuffix o S N e f=  

• ( ) ( ) ( )3, , 10, , 12,c Rprefix o S N e f=  and ( ) ( )3, , 20, .=c Rsuffix o S N c  

Note that RN  can be automatically set by studying the average size of the prefix and the 
suffix of compact occurrences. 

Definition 3.5: (inclusion of LSR pattern) Given RN  and a set of constraints ,C  a LSR 
pattern ( ), ,x l s r=  is included in a sequence S  if the following conditions held: 

1 s  has a compact occurrence in S  

2 i∃  such that ,el l∀ ∈  item le  appears in ( ), ,i
c Rprefix o S N  and ,er r∀ ∈  item re  

appears in ( ), , ,i
c Rsuffix o S N  where ico  is the thi  compact occurrence of s  in .S  

To support a LSR ( ), ,l s r  pattern, a data sequence first must contain the sequential 

pattern .s  Then, it must exist ,ico  an thi  compact occurrence of s  in S  such that all 

elements of l  must be contained in the prefix of ico  with respect to .RN  Moreover, for 

the same compact occurrence ,ico  all elements of r  must also be contained in the suffix 

of ico  with respect to .RN  Note that the order constraint is relaxed for l  and .r  Indeed, 
elements from these itemsets must be contained in the neighbourhood of the sequence, 
whatever their order of appearance. 
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According to the previous definition, we can define the support of a LSR pattern in a 
sequence database. 

Definition 3.6: (Support) Given a set of data sequences SDB  and a neighbourhood range 
,RN  the support of a LSR pattern x  is the number of sequences from SDB  that contain 

.x  

The problem of mining LSR patterns aims at discovering frequent LSR patterns from a 
sequence database. In order to avoid some redundancies, we return frequent LSR patterns 
having maximal itemsets. 

Definition 3.7: (LSR pattern mining problem) Let SDB  be a set of data sequences and 
RN  be a radius of neighbourhood. Given a minimum support threshold ,minsup  the 

problem of mining LSR patterns is to find the complete set of LSR patterns FS  from 
SDB  defined as the set ( ){ ( ), ,  . . FS x l s r s t support x minsup= = ≥  and ( ), ,′ ′ ′∃ =/ x l s r  

having ( )support x minsup′ ≥  where l l ′  and r r ′  and }.x x ′≠  

The problem of mining LSR patterns is difficult since it combines constraint based 
sequence mining and itemset mining when the order constrain is relaxed around a 
frequent sequence within data sequences. Nevertheless, the next section shows how we 
overcome this difficulty and it provides our method to mine LSR patterns. 

3.3 LSR pattern mining algorithm 

Our method to extract LSR pattern is divided into two constraint-based mining steps. 
First, the set ( )SAT C  of sequential patterns that satisfy the set of constraints C  is 
discovered from .SDB  Then, a new set SDB ′  of data sequences is generated according 
to patterns from ( ).SAT C  The LSR patterns are then extracted from this dataset .SDB ′  

Algorithm 1 describes the extraction of frequent LSR patterns. Let us describe more 
precisely its different steps. 

Given ,SDB  ,minsup  and ,C  the first step of the algorithm is to find the set of 
sequential patterns in SDB  that satisfy ,C  denoted ( ).SAT C  

Then, the algorithm transforms SDB  into a new sequence dataset SDB ′  according 
to ( ).SAT C  It builds a set of identifiers idP  associated to the patterns in ( ) ,SAT C  that 
will be used as additional items in the new dataset. For each occurrence co  of the patterns 
in ( )SAT C  (first loop), a new sequence S ′  is built. In such a sequence ,S ′  a pattern 
identifier replaces the occurrence ,co  and on the left and on the right of the occurrence 
only the elements within the RN  neighbourhood are conserved. As an example, given a 
neighbourhood 4,RN =  and a sequential pattern , , ,s a b c=  from its compact 

occurrence ( ) ( ) ( )3, , 6, , 9,a b c  in the data sequence ( ) ( ) ( ) ( ) ( )1, , 2, , 3, , 4, , 6,=S a c a d b  

( ) ( ) ( ) ( ) ( ) ( )8, , 9, , 11, , 12, , 14, , 18,d c a d e c  of ,SDB  the algorithm generates in SDB ′  

the sequence ( ) ( ) ( )( ) ( ) ( )1, , 2, , 3, , 11, , 12, .S a c pattId s a d′ =  
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Algorithm 1 LSR pattern mining 

Data: Sequence database ,SDB  minimum support threshold ,minsup  set of constraints ,C  
neighbourhood range RN  

Result: Set of frequent LSR patterns 
begin 
 ( ) ( )FrequentSequenceMining , , ;←SAT minsup SDBC C  

 0;SDB′ ← /  

 Associate to each pattern s  in ( )SAT C  a new symbol denoted ( );pattId s   

 Let idP  be the set of all these new symbols; 

 for each compact occurrence co  of the patterns in ( )SAT C  do 

   Let co  be of the form: ( ) ( ) ( )1 1 2 2, , , ,..., , ;k kt i t i t i  

   Let S  be the data sequence where ,co  occurrence of a pattern ,s  has been found; 

   ( ) ( )( ) ( )1, , , , ,c R c RS prefix o S N t pattId s suffix o S N′ ← ⊕ ⊕  

// where ⊕  denotes list concatenation 

   { }′ ′ ′← ∪SDB SDB S  

 { }pattern must contain an element of id′ ←C P  

 ( ) ( )FrequentSequenceMining , , ;SAT minsup SDB′ ′ ′←C C  

 0;← /R  

 for each pattern p  in ( )SAT ′C  do 

   Let p  be of the form: 1 2 1 2, ,..., , , , ,...,n mi i i id i i i′ ′ ′  where ;idid ∈P  

   Let s be the sequential pattern such that ( ) ;pattId s id=  

   Left left  be the set of the different items appearing in 1 2, ,..., ;ni i i  

   Left right  be the set of the different items appearing in 1 2, ,..., ;mi i i′ ′ ′  

   { }, , ;left s right← ∪R R  

 Remove from R  the LSR patterns that are not maximal; 

 return R ; 
end 

Next, from ,′SDB  the algorithm extracts, the sequential patterns that contain an 
identifier of one of the patterns extracted from .SDB  Then (second loop), for each 
pattern p  obtained from ,SDB ′  the algorithm retrieves the identifier part ( )idid ∈P  to 
find the corresponding sequential pattern s extracted from .SDB  This pattern s  forms 
the central part of a LSR pattern. The algorithm takes the different items on the left (resp. 
on the right) of the id  to form the left (resp. right) part of this LSR pattern. Finally,  
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non-maximal patterns are removed from the resulting set ,R  where ( ), ,x l s r=  is  

non-maximal if there is another LSR pattern ( ), ,x l s r′ ′ ′=  such that x x′ ≠  and l l ′  

and .r r ′  
The algorithm is based on two sequence mining steps. It is complete because the 

sequence mining algorithm, which is used, is complete. 

3.4 Use of LSR patterns for NER problems 

LSR patterns can be used for biomedical NER problem. To challenge this problem, we 
have first to extract specific LSR frequent patterns. Then, we have to correctly use this 
set of LSR patterns for discovering named entities in natural language texts. 

3.4.1 Extracting LSR patterns for NER problems 

First, we have to mine frequent LSR patterns on a tagged and tokenised corpus with 
special constraints. Sequences must contain a biomedical named entity. As an example, 
sequences must contain an item AGENE in the case of gene name recognition. Moreover, 
a time constraint is added in order to consider only consecutive events. This constraint is 
primordial for the use of sequences as regular expression in the recognition phase. 

To extract patterns in the experiments presented in this paper, we used our own 
prototype implemented in C and called dmt4sp. This program enables to extract patterns 
that encompass substring patterns, serial episodes from Mannila et al. (1997) and a 
limited form of sequential patterns (see Agrawal and Srikant, 1995). It performs complete 
extractions of the patterns in a collection of sequences, under a combination of 
constraints on the support and syntax of the patterns, and on the time intervals between 
the events. The support constraint includes both the support in number of occurrences of 
the patterns (as defined by Mannila et al., 1997), and the support in number of sequences 
containing at least one occurrence of the patterns (as defined by Agrawal and Srikant, 
1995). The second kind of constraints, the syntactic constraints, includes constraints on 
the prefix of the patterns and on the pattern sizes (minimum and maximum size). Finally, 
the time interval constraints enable to set the minimum and maximum time span between 
events and also between the first and the last element of the patterns. The pattern 
enumeration method is a standard depth-first prefix-based strategy. It combines constraint 
checking with a management of occurrences using the occurrence list approach (see Zaki, 
2000) with a virtual database projection proposed by Pei et al. (2001), and an efficient 
handling of multiple occurrences as Meger and Rigotti (2004) and Nanni and Rigotti 
(2007), under the so-called minimal occurrence semantics from Mannila et al. (1997). 

We propose to associate a confidence measure to the sequential pattern s  of each 
LSR pattern. The aim of this measure is to determine if the sequential pattern can be 
applied on its own or if it is necessary to study its surrounding context (itemsets l  and 
r ) to apply it. The confidence of a sequential pattern s  for a entity name E  is equal to 
the support of s  divided by the support of the sequential pattern s  in which the items 
corresponding to the entity name E  (e.g., AGENE) have been replaced by a wild-card ∗. 
This sequential pattern is denoted [ ],s E ∗  and definitions of support and occurrence also 
apply to it, with the wild-card ∗ matching any word or group of words. 
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Definition 3.8: (Confidence) Given a named entity ,E  the confidence of a sequential 
pattern ,s  containing ,E  is equal to: 

( ) ( )
[ ]( )E

support s
Confidence s

support s E
=

∗
 

This measure aims at determining if the occurrence of entity E  could be related to the 
presence of the other items of the sequence. For instance, if the support of a sequence 〈the 
gene AGENE interacts with〉 is similar to the support of the sequence 〈the gene ∗ 
interacts with〉 (confidence  1), this means that when a sentence contains ‘the gene’ and 
further ‘interacts with’, there is a gene name between them. 
Algorithm 2 Use of LSR pattern for NER problems 

Data: Sentence ,S  LSR pattern ( ), , ,x l s r=  minimum confidence threshold ,mincon f  

neighbourhood range ,RN  minimum number of words ,minW named entity E  

begin 
 for each compact occurrence co  of [ ]s E ∗  in S  do 

  if ( )Confidence s mincon f≥  then 

    Label with E  the part of co  corresponding to ∗  in [ ];s E ∗  

  else 
   if ( ) ( ), , , ,c R c R minprefix o S N l suffix o S N r W∩ + ∩ ≥  then 

     Label with E  the part of co  corresponding to ∗  in [ ];s E ∗  

   else 
     Do not apply ;s  

     
    
  
end 

3.4.2 Detection of named entities 

Algorithm 2 describes how a LSR pattern can be applied or not to a sentence. Given a 
sentence in natural language, this sentence is tokenised and then we try to find patterns 
from the set of frequent LSR patterns that can be applied to the tokenised sentence. If a 
sequential pattern s  of a LSR pattern ( ), ,x l s r=  can be applied (all tokens of s  that are 
different from a named entity are perfectly matched), we check the confidence of .s  If the 
confidence is greater than a minimum confidence threshold minconf , then, we consider 
that s  can be applied on its own. Otherwise, s  is not confident enough to be directly 
applied. It is thus, necessary to examine its surrounding context. If a sufficient number of 
items, according to a threshold ,minW  from l  and r  match the left and right contexts of 
s  within the tokenised sentence, then the use of s  is considered to be relevant, according 
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to the context. Notice that the sequential pattern s  can be applied several times within 
the sentence. So it is necessary to consider all compact occurrences. Since the number of 
compact occurrences within a sentence is finite, Algorithm 2 terminates. 

4 Experiments 

We report experiments performed on real datasets described in Section 2: BioCreative 
(Yeh et al., 2005, cf. Figure 5), Genia (Tanabe et al., 2005, cf. Figure 6) and Abstracts 
(cf. Figure 7). These experiments aim at showing the interest of LSR patterns, especially 
in the biomedical the NER problem where they represent an excellent trade-off between 
the high-precision of sequential rules and the high recall of sequential patterns. Each 
corpus was tokenised. According to the previous definitions, each sentence is a data 
sequence. SDB  is then the set of sentences from a corpus. We used a ten-fold cross 
validation to partition each initial data set in a training set and in a testing set. 

LSR patterns excel in exploitation of formerly unconfident sequential patterns. As an 
example, that AGENE is not confident at all, but some words frequently appear in the left 
neighbourhood of this pattern (indicated, revealed, demonstrate, evidence) and in the 
right neighbourhood (binds, expressed, activity, protein, etc.). As a consequence, such 
unconfident sequential patterns that seem to be useless for the NER problem can be 
applied, thanks to their neighbourhood. 

The goal of the experiments is to evaluate the quality of recognition of LSR patterns 
for NER problems. We also study the behaviour of LSR patterns according to the 
minimum support, the minimum confidence and .minW  In all experiments, we fix 

5RN =  for linguistic reasons, it is a size for which linguists consider that it makes sense 
to try to connect words. 

Figures 5(a), 6(a) and 7(a) describe the precision and recall of LSR patterns for NER 
problems according to the absolute minimum support threshold. The behaviour of LSR 
patterns is similar in the three plots. The recall increases and the precision decreases 
when the minimum support threshold becomes smaller. Indeed, there is a larger set of 
frequent LSR patterns that thus provides a better coverage (better recall) for the detection 
of named entities. However, this larger set leads also to the detection of a greater number 
of false positives and then to a lower precision. 

Figures 5(b), 6(b) and 7(b) aim at comparing the performance of LSR patterns, 
sequential patterns and sequential rules for the NER problem. To compare these 

approaches, we use the well-known F-measure 1
2× ×

=
+

Precision Recall
F

Precision Recall
 (see Van 

Rijsbergen, 1979) that is the harmonic mean of precision and recall. Indeed, this measure 
aims to make a trade-off between precision and recall. So we use it to evaluate and 
compare the performance of the different approaches. Note that there is no result for 
sequential rules in Figure 5(b) because this technique gave too bad results in this 
BioCreative corpus [see Figure 3(b)]. For BioCreative corpus [Figure 5(b)], LSR patterns 
are significantly better than sequential patterns. On Genia corpus [Figure 6(b)], LSR 
patterns are also better when the minimum support threshold is low. On Abstracts corpus 
[Figure 7(b)], LSR patterns overall give the best F-scores. Note again that sequential 
rules are better than sequential patterns on this corpus. These different plots show the 



   

 

   

   
 

   

   

 

   

   138 M. Plantevit et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

interest of LSR patterns for the NER problem since they overcome sequential patterns 
and sequential rules. 

Figures 5(c), 6(c) and 7(c) report the recall and precision of LSR patterns when the 
minimum confidence threshold changes. The three plots are similar. The recall increases 
and the precision decreases when the minimum confidence threshold becomes lower. 
Indeed, the lower the confidence threshold, the bigger the number of false positives is. 
However, we can notice that the neighbourhood awareness lead to preserve the good 
precision of LSR patterns. 

Figure 5 Experiment on BioCreative dataset, (a) precision and recall of LSR patterns 
( )3, 5= =min RW N  (b) F-score of LSR patterns, sequential patterns 

( )3, 5min RW N= =  (c) precision and recall of LSR patterns according to 

( )10, 3, 5= = =Rmincon f minsupp vmin N  (d) precision and recall of LSR patterns 

according to ( )0.6, 5= =min RW mincon f N  

 
(a) 

 
(b) 
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Figure 5 Experiment on BioCreative dataset, (a) precision and recall of LSR patterns 
( )3, 5= =min RW N  (b) F-score of LSR patterns, sequential patterns 

( )3, 5min RW N= =  (c) precision and recall of LSR patterns according to 

( )10, 3, 5= = =Rmincon f minsupp vmin N  (d) precision and recall of LSR patterns 

according to ( )0.6, 5= =min RW mincon f N  (continued) 

 
(c) 

 
(d) 

Figures 5(d), 6(d) and 7(d) report the recall and the precision of LSR patterns according 
to .minW  This parameter means that at least minW  items from the itemsets l  and r  must 
be present in the neighbourhood of the sequential pattern s  to take the LSR pattern 

( ), ,x l s r=  into account for the detection of a named entity. When minW  is too 
important, it is difficult for LSR patterns to satisfy this condition whereas they easily 
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satisfy it when minW  is small. Therefore, the precision increases and the recall decreases 
when minW  becomes higher. 

Figure 6 Experiment on Genia dataset, (a) precision and recall of LSR patterns 
( )3, 5= =min RW N  (b) F-score of LSR patterns, sequential patterns and sequential 

rules ( )3, 5= =Rvmin N  (c) precision and recall of LSR patterns according to 

( )3, 5= =min Rmincon f W N  (d) precision and recall of LSR patterns according to 

( )50, 0.6, 5= = =min RW minsupp mincon f N  

 
(a) 

 
(b) 
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Figure 6 Experiment on Genia dataset, (a) precision and recall of LSR patterns 
( )3, 5= =min RW N  (b) F-score of LSR patterns, sequential patterns and sequential 

rules ( )3, 5= =Rvmin N  (c) precision and recall of LSR patterns according to 

( )3, 5= =min Rmincon f W N  (d) precision and recall of LSR patterns according to 

( )50, 0.6, 5= = =min RW minsupp mincon f N  (continued) 

 
(c) 

 
(d) 
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Figure 7 Experiment on Abstracts dataset, (a) precision and recall of LSR patterns 
( )3, 5= =min RW N  (b) F-score of LSR patterns, sequential patterns and sequential 

rules ( )3, 5, 0.6= = =min RW N mincon f  (c) precision and recall of LSR patterns 

according to ( )100, 3, 5= = =min Rmincon f minsupp W N (d) precision and recall of 

LSR patterns according to ( )100, 0.6, 5= = =min RW minsupp mincon f N  

 
(a) 

 
(b) 
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Figure 7 Experiment on Abstracts dataset, (a) precision and recall of LSR patterns 
( )3, 5= =min RW N  (b) F-score of LSR patterns, sequential patterns and sequential 

rules ( )3, 5, 0.6= = =min RW N mincon f  (c) precision and recall of LSR patterns 

according to ( )100, 3, 5= = =min Rmincon f minsupp W N (d) precision and recall of 

LSR patterns according to ( )100, 0.6, 5= = =min RW minsupp mincon f N  (continued) 

 
(c) 

 
(d) 

These experiments show the strengths of our approach. Taking the neighbourhood of a 
sequential pattern into account provides promising results. Indeed, LSR patterns 
overcome sequential patterns and sequential rules. According to the best results for 
gene/protein name recognition on Genia and BioCreative corpora (F-score are 
respectively 77.8% and 80%), our results are comparable. Moreover, LSR patterns are 
easily understandable. As an example, we discover the following pattern 〈{} 〈AGENE, 
expression, in〉,{cells}〉 that means that the word cells appears in many cases in the right 
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neighbourhood of the frequent sequence 〈AGENE expression in〉. This illustrates another 
important interest of our approach: the possible use of LSR patterns in a NLP system by a 
linguistic expert and/or as linguistic resource. 

5 Related works 

NER is an IE subtask, which consists in locating some strings in a corpus and then 
assigning a predefined category (gene, protein, biological function) to them. NER has to 
deal with several difficulties such as polysemy (multi-sense words), synonymy,  
multi-word terms, variability in the form of names and neologism. It can be considered as 
a NLP problem and linguistic analysis based methods are one of the proposed approaches 
in literature such as Cohen and Hunter (2004) and Cohen and Hersh (2005). They are 
named ‘rule-based approaches’ since they aim at defining regular expressions, linguistic 
patterns or grammars that match gene or protein names [for example, Fukuda et al. 
(1998), one of the earliest systems]. Some of them (e.g., Humphreys et al., 2000) use 
terminological resources: databases, ontologies, such as UMLS and LocusLink. 
According to Leser and Hakenberg (2005) rule-based approaches can reach high 
precision but recall is often low if the rules are too specific making the system not robust 
enough towards new named entities. Another critical point has to be considered: the rules 
are manually designed by human experts, are a highly time consuming task and 
portability is costly. 

A second broad category of approaches appeared with the availability of annotated 
corpus: methods based on ML techniques have been investigated and some promising 
results have already been obtained by cross-fertilisation of IE and ML techniques on 
biomedical texts (see Chang et al., 2006; Nédellec et al., 2006 for a review; Smith et al., 
2008 for recent systems used during the latest BioCreative challenge, BioCreative II). A 
large variety of approaches can be used: decision trees, Bayesian classifiers, maximum 
entropy, hidden Markov models, support vector machines and conditional random fields. 
Some of the ML approaches use sequence based systems, considering the complete 
ordered sequences of words in sentences: for example Kinoshita et al. (2005) and Dingare 
et al. (2004). The first one retrains a dedicated train tagger (TnT-Tagger) by including 
sequential information, and the second one uses entropy model for predicting the most 
probable sequence of classifications for words of a sentence. These works often use 
statistical discriminators and differ from our approach by building models that can only 
be used as black boxes to perform predictions, but that cannot be interpreted by linguistic 
or biological experts. For example, SVMs draw a hyperplane in an n-dimensional space, 
from which deducing readable and understandable patterns is not feasible. However, 
there are some systems that aim at learning some linguistic rules that can be read and 
understood by human experts. For instance, Califf and Mooney (1999), Kim et al. (2007) 
and Cakmak and Özsoyoglu (2007) learned rules in the form of single slot IE patterns or 
textual extraction patterns, which are equivalent to our sequential patterns (the s  in our 
LSR patterns). These systems have not been used for name gene recognition but for 
extracting relations between entities [relations for protein/gene annotations in Kim et al. 
(2007) and Cakmak and Özsoyoglu (2007)], and do not consider the intrinsic issue of 
high precision/low recall problem that is due to the use of sequential patterns (see Leser 
and Hakenberg, 2005). In our approach, this problem is overcome by the use of 
contextual information (the l  and r  parts of the LSR patterns). 
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Mining sequential data is not limited to the application presented in this paper and 
arises in many domains, to analyse various kinds of data including customer transactions, 
web logs, geophysical data, medical data and of course biological sequences. Most of the 
time, due to the size of the datasets and to the size of the pattern space, mining sequential 
data is a difficult task. It has received a lot of attention in the literature, from the 
extraction of substrings (e.g., Ukkonen, 1995) to the extraction of more general patterns 
like sequential patterns (e.g., Agrawal and Srikant, 1995) and episodes (e.g., Mannila et 
al., 1997). One of the most salient extensions of these techniques is the use of constraints, 
to focus on the patterns of interest, together with the active use of these constraints to 
reduce the search space (e.g., Srikant and Agrawal, 1996; Zaki, 2000; Garofalakis et al., 
1999; Lee and De Raedt, 2004), and to improve the efficiency of the extractions in 
practice. Pinto et al. (2001) and Stefanowski and Ziembinski (2005) try to contextualise 
sequential patterns. However, LSR patterns are different from these context-based 
sequential patterns. Indeed, Pinto et al. (2001) and Stefanowski and Ziembinski (2005) 
aim at using a set of attributes to characterise a sequential pattern. The attributes that 
contextualise sequential patterns do not appear within the sequential patterns whereas 
neighbourhoods and sequences of LSR patterns are described with the same set of 
attributes. 

6 Conclusions 

In this paper, we introduced a new type of pattern for sequential data mining, the LSR 
pattern. It benefits from synergic action of sequential pattern and rule mining as well as 
frequent itemset mining. It aims to characterise a sequential pattern by its surrounding 
context. The order constraint is relaxed in proximity of the sequential pattern in order to 
discover the frequent itemsets that model its neighbourhood within data sequences. 
Furthermore, we have shown the relevance of LSR by considering the biomedical NER 
problem in which sequential patterns and sequential rules present limitations. LSR 
patterns offer a good trade-off between the high recall of sequential patterns and the high 
precision of sequential rules for this problem. Indeed, LSR patterns provide a surrounding 
context awareness that enables the disambiguation of the sequence, thanks to the analysis 
of its neighbourhood. Experiments, carried out on real datasets, show in these non-trivial 
cases, the power of our approach. Note that the use of LSR patterns for NER problems 
leads to an entirely automatic method in which extraction rules can be highly understood 
by a non-expert. Moreover, LSR patterns can be employed in other domains for the NER 
problem without effort since the method only considers sequences of tokens on its input. 

There are several directions that can be followed to extend the ideas reported in this 
paper. Concerning the use of LSR in the NER problem, it would be interesting to 
consider richer input data. Instead of only considering sequences of tokens, we can 
introduce pieces of information as stemmas or part-of-speech analysis from 
computational linguistic. We are convinced that considering such pieces of information 
would result in an additional gain in both recall and precision when applying LSR 
patterns to the NER problem. It would also be interesting to use some LSR patterns as 
features in based-ML methods. 

We argue that LSR patterns can also be used in many other contexts and problems. 
As an example, another use of LSR pattern could be the analysis of network datagrams in 



   

 

   

   
 

   

   

 

   

   146 M. Plantevit et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

the field of network security: an attack could be represented by ( ), ,l s r  where l  and r  
are the surrounding contexts before and after the attack. In this case, l  is obviously more 
important than r  in order to prevent the attack. It would also be interesting to apply LSR 
pattern mining to the discovery of interactions between genes and proteins so as to 
combine such knowledge with the one discovered in other types of data such as micro 
array datasets. 
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