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F-14032 Caen Cedex, France

{Forename.Surname}@info.unicaen.fr

Abstract. Local patterns are at the core of the discovery of a lot of
knowledge from data but their use is limited by their huge number. That
it is why discovering global patterns and models from local patterns is
an active research field. In this paper, we investigate the relationship be-
tween local constraint-based mining and constraint programming and we
propose an approach to model and mine patterns combining several local
patterns, i.e., patterns defined by global constraints. The user specifies
a set of global constraints and a constraint solver generates the whole
set of solutions. Our approach takes benefit from the recent progress on
mining local patterns and all local constraints which can be inferred from
the global ones are pushed by a solver on local patterns. This approach
enables us to model in a flexible way any set of constraints combining
several local patterns. Experiments show the feasibility of our approach.

1 Introduction

It is well-known that the “pattern flooding which follows data flooding” is an un-
fortunate consequence in exploratory Knowledge Discovery in Databases (KDD)
processes. There is a large range of methods to discover the patterns of a po-
tential user’s interest but the most significant patterns are lost among too much
trivial, noisy and redundant information. Many works propose methods to reduce
the collection of patterns, such as the constraint-based paradigm [23], the pat-
tern set discovery approach [10, 18], the so-called condensed representations [6]
as well as the compression of the dataset by exploiting the Minimum Description
Length Principle [25].

The constraint-based pattern mining framework is a powerful paradigm to
discover new highly valuable knowledge [23]. Constraints provide a focus on
the most promising knowledge by reducing the number of extracted patterns
to those of potential interest for user. There are now generic approaches to
discover local patterns under constraints [9, 26] and this issue is rather well-
mastered, at least for data described by items (i.e., boolean attributes). We call
local constraints the constraints addressing local patterns. Here, locality refers
to the fact that checking whether a pattern satisfies or not a constraint can be
performed independently of the other patterns holding in the data. Nevertheless,
even if the number of produced local patterns is reduced thanks to the constraint,



the output still remains too large for individual and global analysis by the end-
user. Furthermore, local constraints are insufficient to define and discover a lot
of global patterns and models expected by the end-users. Indeed, the interest
of a pattern often depends on the other patterns and a lot of models such as a
classifier or regression model require to consider simultaneously several patterns
to combine the fragmented information conveyed by the local patterns. That is
why we claim that discovering patterns under constraints involving comparisons
between local patterns holding in the data is a major issue. In the following of
this paper, we call global constraints such constraints. These constraints are at
the basis of global patterns and models.

Mining patterns under local constraints requires the exploration of a large
search space, even in the case of the simplest patterns, i.e., data described by
items. Obviously, mining patterns under global constraints is even harder be-
cause we have to take into account and compare the solutions satisfying each
pattern involved in a global constraint. In this paper, we investigate the rela-
tionship between constraint-based mining and constraint programming and we
propose an approach to model and mine patterns under global constraints. As
Constraint Satisfaction Problem (CSP) has the ability to define constraints on
several variables [1], it is a natural way to model global constraints. We show
that each pattern of a global constraint can be assimilated to a variable in the
CSP framework. The great advantage of this modeling is its flexibility, it enables
us to define a large broad of global constraints. Basically, with our approach,
the user specifies the model, that is, the set of global constraints which has to
be satisfied, and a constraint solver generates the correct and complete set of
solutions. The CSP community has developed several efficient constraint solvers
that we can reuse and the resolution can be performed at the level of this global
modeling. But we think that it would be a pity not to take benefit from the re-
cent progress on mining local patterns. That is why a key point of our approach
is to divide a global constraint in two parts, i.e., a set of local constraints Cloc

which is solved by a solver on local patterns and a set of global constraints Cglob

which is solved by a CSP solver (cf. Section 4 for more details). We claim that
is this combination between the local and global levels which enables us the dis-
covery of patterns under global constraints. In other words, the contribution of
this paper is to propose an approach joining local constraint mining and set con-
straint programming in order to model global constraints and discover patterns
under such constraints. More generally, the paper investigates the relationship
between constraint-based mining and set constraint programming.

This paper is organized as follows. Section 2 sketches definitions and presents
the problem statement. The background on pattern discovery and set constraint
programming is given in Section 3. We propose our approach to model and mine
patterns under global constraints in Section 4. Section 5 details experiments.
Section 6 deals with a discussion and research issues related to our approach.



2 Definitions and motivations

Below we give definitions used in the paper and the context and motivations.

2.1 Definitions

Let I be a set of distinct literals called items, an itemset (or pattern) is a non-null
subset of I. The language of itemsets corresponds to LI = 2I\∅. A transactional
dataset is a multi-set of itemsets of LI . Each itemset, usually called transaction
or object, is a database entry. For instance, Table 1 gives a transactional dataset r
where 9 objects o1, . . . , o9 are described by 6 items A, . . . , c2.

Trans. Items

o1 A B c1

o2 A B c1

o3 C c1

o4 C c1

o5 C c1

o6 A B C D c2

o7 C D c2

o8 C c2

o9 D c2

Table 1. Example of a transactional context r.

Let X be a local pattern. Pattern mining aims at discovering information
from all the patterns or a subset of LI . More precise, constraint-based mining
task selects all the itemsets of LI present in r and satisfying a predicate which is
named constraint. Local patterns are regularities that hold for a particular part
of the data. A local pattern is of special interest if it exhibits a deviating behavior
w.r.t. the underlying global model of the data [15] because we are seeking for
surprising knowledge which deviates from the already known background model.
There are a lot of constraints to evaluate the relevance of local patterns. A well-
known example is the frequency constraint which focuses on patterns having a
frequency in the database exceeding a given minimal threshold γ > 0: freq(X) ≥
γ. Many works [23] replace the frequency by other interestingness measures to
evaluate the relevance of patterns such as the area of a pattern (area(X) is
the product of the frequency of the pattern times its length, i.e., area(X) =
freq(X)× count(X) where count(X) denotes the cardinality of X).

In practice, the user is often interested in discovering more complex patterns
such as the simplest rules in the classification task based on associations [2, 30],
pairs of exception rules [28] which may reveal global characteristics from the
database. The definition of such patterns relies on properties involving several
local patterns and are here called global patterns. They are formalized by the
notion of global constraint [7].



Definition 1 (Global constraint). A constraint q is said global if several local
patterns have to be compared to check if q is satisfied or not.

The next section provides more precise examples of global constraints.

2.2 Context and motivations

Global constraints are very useful to design a lot of patterns requested by the
users. For instance, the discovery of exception rules from a data set without
domain-specific information is of a great interest [28]. An exception rule is defined
as a deviational pattern to a strong rule and the interest of an exception rule is
evaluated according to another rule. The comparison between rules means that
these exception rules are not local patterns. More formally, an exception rule is
defined within the context of a pair of rules as follows (I is an item, for instance
a class value, X and Y are local patterns):

exception(X → ¬I) ≡

8<:
true if ∃Y ∈ LI such that Y ⊂ X, one have

(X\Y → I) ∧ (X → ¬I)
false otherwise

Such a pair of rules is composed of a common sense rule X\Y → I (the
term “common sense rule” represents a user-given belief) and an exception
rule X → ¬I since usually if X\Y then I. The exception rule isolates unex-
pected information. This definition assumes that the common sense rule has
a high frequency and a rather high confidence and the exception rule has a
low frequency and a very high confidence (the confidence of a rule X → Y is
freq(X ∪Y )/freq(X)). Assuming that a rule X → Y holds iff at least 2/3 of the
transactions containing X also contains Y , the rule AC → ¬c1 is an exception
rule in our running example (cf. Table 1) because we jointly have A → c1 and
AC → ¬c1. Note that Suzuki proposes a method based on sound pruning and
probabilistic estimation [28] to extract the exception rules. Nevertheless, this
method is devoted to this kind of patterns.

In the context of genomics, local patterns defined by groups of genes and
satisfying the area constraint previously introduced above are at the core of the
discovery of synexpression groups [16]. Nevertheless, in noisy data such as tran-
scriptomic data, the search of fault-tolerant patterns is very useful to cope with
the intrinsic uncertainty embedded in the data [4]. Global constraints are a way
to design such fault-tolerant patterns: larger sets of genes with few exceptions
are expressed by the union of several local patterns satisfying an area constraint
and having a large overlapping between them. From two local patterns, it cor-
responds to the following global constraint: area(X) > minarea ∧ area(Y ) >
minarea ∧ (area(X ∩ Y ) > α × minarea) where minarea denotes the minimal
area and α is a threshold given by the user to fix the minimal overlapping be-
tween the local patterns. The set of global constraints can also be extended by
the use of the universal quantifier (see Section 7).

Section 4 presents our approach to model patterns satisfying such global
constraints and how we combine local constraint mining and set constraint pro-
gramming to extract these patterns.



3 Background: related works and set CSP

3.1 Local patterns and pattern sets discovery

As said in the introduction, there are a lot of works to discover local patterns un-
der constraints. A key issue of these works is the use of the property of monotonic-
ity because pruning conditions are straightforwardly deduced [21]. A constraint
q is anti-monotone w.r.t. the item specialization iff for all X ∈ LI satisfying q,
any subset of X also satisfies q. In this paper, we use the Music-dfs 1 prototype
because it offers a set of syntactic and aggregate primitives to specify a broad
spectrum of constraints in a flexible way [27]. Music-dfs mines soundly and
completely all the patterns satisfying a given set of input local constraints. The
efficiency of Music-dfs lies in its depth-first search strategy and a safe pruning
of the pattern space exploiting the anti-monotonicity property to push the local
constraints as early as possible. The pruning conditions are based on intervals
representing several local patterns. The local patterns satisfying all the local
constraints are provided in a condensed representation made of intervals (each
interval represents a set of patterns satisfying the constraint and each pattern
appears in only one interval). The lower bound of an interval is a prefix-free
pattern and its upper bound is the prefix-closure of the lower bound [27].

There are also other approaches to combine local patterns. Recent approaches
- pattern teams [18], constraint-based pattern set mining [10] and selecting pat-
terns according to the added value of a new pattern given the currently selected
patterns [5] - aim at reducing the redundancy by selecting patterns from the
initial large set of local patterns on the basis of their usefulness in the context
of the other selected patterns. Even if these approaches explicitly compare pat-
terns between them, they are mainly based on the reduction of the redundancy
or specific aims such as classification processes. We think that global constraints
are a flexible way to take into account a bias given by the user to direct the
final set of patterns toward a specific aim such as the search of exceptions. A
general data mining framework based on the notion of local patterns to design
global models is presented in [17]. This abstract framework helps analyzing and
improving current methods in the area. In our approach (cf. Section 4), we show
the interest of the set constraint programming in this general issue of combining
local patterns.

Constraint programming is a powerful declarative paradigm for solving diffi-
cult combinatorial problems. In a constraint programming approach, one spec-
ifies constraints on acceptable solutions and search is used to find a solution
that satisfies the constraints. A first approach using Constraint Programming
for itemset mining has been proposed in [8]. In this work, constraints such as
frequency, closedness, maximality, and constraints that are monotonic or anti-
monotonic or variations of these constraints are modeled using 0/1 Linear Pro-
gramming. Then patterns satisfying these constraints are obtained by using the
constraint solver Gecode [12]. This work presents in a unified framework a large

1 http://www.info.univ-tours.fr/~soulet/music-dfs/music-dfs.html



set of patterns but does not address patterns modeled by relationships between
several local patterns as those described in Section 2. Recently, this work has
been extended in order to find correlated patterns (i.e., patterns having the
highest score w.r.t. a correlation measure) [24].

3.2 Set CSP

Formally a Constraint Satisfaction Problem (CSP) is a 3-uple (X ,D, C) where
X is a set of variables, D is a set of finite domains and C is a set of constraints
that restrict certain simultaneous variables assignments. There are several types
of CSPs such as numerical CSPs, boolean CSPs, set CSPs, etc. They differ
fundamentally from the domain types and filtering techniques. We present here
more precisely set CSPs that are used in our modeling. First, we define Set
Intervals. Then we introduce set CSPs, and give an example. Finally we present
some filtering rules for set CSPs.

Definition 2 (Set Interval). let lb and ub be two sets such that lb ⊂ ub, the
set interval [lb..ub] is defined as follows: [lb..ub] = {E such that lb ⊆ E and E ⊆
ub}.

Set intervals avoid data storage problems due to the size of domains: they
model the domain and encapsulate all the possible values of the variables. For ex-
ample: [{1}..{1, 2, 3}] summarizes {{1}, {1, 2}, {1, 3}, {1, 2, 3}} and [{}..{1, 2, 3}]
summarizes 2{1,2,3}.

Definition 3 (Set CSP). A set constraint satisfaction problem (set CSP) is
a 3-uple (X ,D, C) where C = {c1, ..., cm} is a set of constraints associated to a
set X = {X1, ..., Xn} of variables. For each variable Xi, an initial domain of set
intervals (or union of set intervals) DXi

is given and D = {DXi
, ..., DXn

}.

In order to illustrate the declarative feature and the expressiveness of set
CSPs, we give the following example.

Example [29] Two transmitters have to be assigned to two radio frequencies
each. Available frequencies are {1, 2, 3, 4} for the first transmitter and {3, 4, 5, 6}
for the second one. The distance between these two frequencies is equal to the
absolute value of the difference between these frequencies. The constraints are:

– two radio frequencies have to be assigned to each transmitter: c1 ∧ c2.
– both transmitters do not share frequencies: c3

– two frequencies within a transmitter must have at least a distance equals to
2: c4

– the first transmitter requires the frequency 3: c5

– the second transmitter requires the frequency 4: c6

It can be expressed as a set CSP (X ,D, C), where:

– X = {t1, t2} where t1 and t2 are the two transmitters.



– D(t1) = [{} .. {1, 2, 3, 4}] and D(t2) = [{} .. {3, 4, 5, 6}].
– C = {c1, c2, c3, c4, c5, c6} where:

• c1 | t1 |= 2
• c2 | t2 |= 2
• c3 t1 ∩ t2 = ∅
• c4 ∀v1, v2 ∈ ti, | v1 − v2 |≥ 2 i = 1, 2
• c5 3 ∈ t1
• c6 4 ∈ t2

This problem has a unique solution where the first transmitter is assigned to
the frequencies {1, 3} and the second to {4, 6}.

Examples of filtering rules for set CSPs: For CSPs, filtering consists of
reducing the variable domains in order to remove values that cannot occur in
any solution. As soon as a domain DXi becomes empty (i.e., there is no available
value for Xi), a failure is generated for the search. Filtering rules for integer inter-
vals and set intervals are presented in [22, 19, 14]. We now present two examples
of filtering rules for set intervals, the inclusion and the intersection constraints:

Let Dx = [ax..bx], Dy = [ay .. by] and Dz = [az .. bz] three domains repre-
sented by set intervals and D′

x, D′
y and D′

z the filtered domains.

– Constraint: X ⊂ Y
Filtering rule: if ax ⊂ by then

D′
x = [ax .. bx ∩ by]

D′
y = [ax ∪ ay .. by]

else
D′

x = ∅, D′
y = ∅

– Constraint: Z = X ∩ Y
Filtering rule: if (bx ∩ by) ⊂ bz and (bx ∩ by) 6= ∅ then

D′
x = [ax ∪ az .. bx \ ((bx ∩ ay) \ bz]

D′
y = [ay ∪ az .. by \ ((by ∩ ax) \ bz]

D′
z = [az ∪ (ax ∩ ay) .. bz ∩ bx ∩ by]

else
D′

x = D′
y = D′

z = ∅

Programming tool: ECLiPSe [11] is a Constraint Programming Tool sup-
porting the most common techniques used in solving constraints satisfaction (or
optimization) problems: Constraint Satisfaction Problems, Mathematical Pro-
gramming, Local Search and combinations of those. ECLiPSe is built around
the Constraint Logic Programming paradigm [1]. Different domains of con-
straints as numeric CSP and Set CSPs can be used together. Finally, libraries
for solving set CSPs, as ic-sets or conjunto [13], are available in ECLiPSe.



4 Set Constraint Programming for Pattern Discovery

Our approach is based on two major points. First, we use the wide possibilities
of modelization and resolution given by the CSPs, in particular the set CSPs and
numeric CSPs. Second, we take benefit from the recent progress on mining local
patterns. The last choice is also strengthened by the fact that local constraints
can be solved before and regardless global constraints.

In this section, we start by giving an overview of our approach. Then we
describe each of the three steps of our method by considering the example of the
exception rules described in Section 2.2.

4.1 General overview

Figure 1 provides a general overview of the three steps of our approach:

1. Modeling the query as CSPs, then splitting constraints into local ones and
global ones.

2. Solving local constraints using a local pattern extractor (Music-dfs, intro-
duced in Section 3.1) which produces an interval condensed representation
of all patterns satisfying the local constraints.

3. Solving global constraints of the CSPs by using ECLiPSe (introduced in
Section 3.2) where the domain of each variable results from the interval
condensed representation (computed in the Step-2).

Fig. 1. General overview of our 3-steps method

4.2 Step-1: Modelling the query as CSPs

Let r be a dataset having nb transactions, and I the set of all its items. We
model the problem by using two CSPs P and P ′ that are inter-related:



1. Set interval CSP P = (X ,D, C) where:
– X = {X1, ..., Xn}. Each variable Xi represents an unknown itemset.
– D = {DX1 , ..., DXn

}. The initial domain of each variable Xi is the set
interval [{} .. I].

– C is a conjunction of set constraints by using set operators (∪, ∩, \, ∈,
/∈, ...)

2. Numeric CSP P ′ = (F ,D′, C′) where:
– F = {F1, ..., Fn}. Each variable Fi is the frequency of the itemset Xi.
– D′ = {DF1 , ..., DFn

}. The initial domain of each variable Fi is the integer
interval [1 .. nb].

– C′ is a conjunction of arithmetic constraints.

Then, the whole set of constraints (C ∪C′) is divided into two subsets as follows:

– Cloc is the set of local constraints to be solved (by Music-dfs). Solutions
are given in the form of an interval condensed representation.

– Cglob is the set of global constraints to be solved (by ECLiPSe), where
the domain of the variables Xi and Fi will be deduced from the interval
condensed representation computed in the previous step.

Local (unary) constraints can be solved before and regardless global con-
straints. The search space of the global constraints is reduced by the space of
solutions satisfying local constraints. This ensures that every solution verifies
both local and global constraints.

4.3 Example: modeling the exception rules as CSPs

Recall that the definition of the pairs of exception rules is given in Section 2.2.

Reformulation: Let freq(X) be the frequency value of the itemset X. Let I
and ¬I ∈ I (in this example, I and ¬I represent the two class values of the data
set). Let γ1, γ2, δ1, δ2 ∈ N. The exception rules constraint can be formulated as
it follows:

– X\Y → I can be expressed by the conjunction: freq((X \ Y )t2I) ≥ γ1 ∧
(freq(X \ Y )− freq((X \ Y ) t I)) ≤ δ1 which means that X\Y → I must
be a frequent rule having a high confidence value.

– X → ¬I can be expressed by the conjunction: freq(Xt¬I) ≤ γ2 ∧(freq(X)−
freq(X t¬I)) ≤ δ2 which means that X → ¬I must be a rare rule having a
high confidence value.

To sum up:

exception(X → ¬I) ≡


∃Y ⊂ X such that:
freq((X \ Y ) t I) ≥ γ1 ∧
(freq(X \ Y )− freq((X \ Y ) t I)) ≤ δ1 ∧
freq(X t ¬I) ≤ γ2 ∧
(freq(X)− freq(X t ¬I)) ≤ δ2

2 the symbol t denotes the disjoint union operator



CSP modelisation: The CSP variables are defined as follows:

– Set variables {X1, X2, X3, X4} representing unknown itemsets:
• X1 : X \ Y ,
• X2 : (X \ Y ) t I (common sense rule),
• X3 : X,
• X4 : X t ¬I (exception rule).

– Integer variables {F1, F2, F3, F4} representing their frequency values (vari-
able Fi denotes the frequency of the itemset Xi).

Table 2 provides the constraints modeling the exception rules.

Constraints CSP formulation Local Global

F2 ≥ γ1 ×
∧

freq((X \ Y ) t I) ≥ γ1 I ∈ X2 ×
∧

X1  X3 ×
F1 − F2 ≤ δ1 ×

freq(X \ Y )− freq((X \ Y ) t I) ≤ δ1 ∧
X2 = X1 t I ×

F4 ≤ γ2 ×
freq(X t ¬I) ≤ γ2 ∧

¬I ∈ X4 ×
F3 − F4 ≤ δ2 ×

freq(X)− freq(X t ¬I) ≤ δ2 ∧
X4 = X3 t ¬I ×

Table 2. Exception rules modeled as CSP constraints

Summary:

– Set interval CSP
• X = {X1, ..., X4}
• C = {(I ∈ X2), (X2 = X1 t I), (¬I ∈ X4), (X4 = X3 t¬I), (X1  X3})

– Numeric CSP
• F = {F1, ..., F4}
• C′ = {(F2 ≥ γ1), (F1 − F2 ≤ δ1), (F4 ≤ γ2), (F3 − F4 ≤ δ2)}

– Cloc = {(I ∈ X2), (F2 ≥ γ1), (F4 ≤ γ2), (¬I ∈ X4)}
– Cglob = {(F1−F2 ≤ δ1), (X2 = X1tI), (F3−F4 ≤ δ2), (X4 = X3t¬I), (X1  

X3)}



4.4 Step-2: Solving local constraints

As already said, we use for this task Music-dfs (see Section 3.1) which mines
soundly and completely local patterns. In order to fully benefit from the effi-
ciency of the local pattern mining, the set of local constraints Cloc is split into
a disjoint union of Ci (for i ∈ [1..n]) where each Ci is the set of local constraints
related to Xi and Fi. Each Ci can be separately solved. Let CRi be the interval
condensed representation of all the solutions of Ci. CRi =

⋃
p(fp, Ip) where Ip

is a set interval verifying: ∀x ∈ Ip, freq(x) = fp. Then the filtered domains (see
Section 4.3) for variable Xi and variable Fi are:

– DFi
: the set of all fp in CRi

– DXi :
⋃

Ip∈CRi
Ip

Example: Let us consider the dataset r (see Table 1) and the local constraints
for the exception rules Cloc = {(I ∈ X2), (F2 ≥ γ1), (F4 ≤ γ2), (¬I ∈ X4)} (see
Section 4.3). The respective values for (I,¬I, γ1, δ1, γ2, δ2) are (c1, c2, 2, 1, 1, 0).
The local constraints set related to X2 is C2 = {c1 ∈ X2, F2 ≥ 2} is solved
by Music-dfs with the following query showing that the parameters given to
Music-dfs are straightforwardly deduced from Cloc.

---------------
./music-dfs -i donn.bin -q "{c1} subset X2 and freq(X2)>=2;"
X2 in [A, c1]..[A, c1, B ] U [B, c1] -- F2 = 2 ;
X2 in [C, c1] -- F2 = 3
---------------

4.5 Step-3: Solving global constraints

Then, from the condensed representation of all patterns satisfying local con-
straints, domains of the variables Xi and Fi (for i ∈ {1, 2, 3, 4}) are updated.

Given the parameters I = c1,¬I = c2, δ1 = 1 and δ2 = 0 (γ1 = 2 and
γ2 = 1 are already used in Step-2) and the data set in Table 1, the following
ECLiPSe session illustrates how all pairs of exception rules can be obtained by
using backtracking:

---------------
[eclipse 1]:
?- exceptions(X1, X2, X3, X4).
Sol1 : X1 = [A,B], X2=[A,B,c1], X3=[A,B,C], X4=[A,B,C,c2];
Sol2 : X1 = [A,B], X2=[A,B,c1], X3=[A,B,D], X4=[A,B,D,c2];
.../...
---------------

5 Experiments

This section shows the practical usage and the feasibility of our approach. This
experimental study is conducted on the postoperative-patient-data coming from



the UCI machine learning repository3. This data set gathers 90 objects described
by 23 items and characterized by two classes (two objects of a third class value
were put aside). We test our approach by using the exception rules as a global
constraint (in the following, we use a class value for the item I given in the
definition of an exception rule). As previously said, we use Music-dfs (see Sec-
tion 3.1) and ECLiPSe (see Section 3.2). All the tests were performed on a
2 GHz Intel Centrino Duo processor with Linux operating system and 2GB of
RAM memory.

These experiments show the feasibility of our approach. Given (I, γ1, δ1, γ2, δ2)
a set of values, our method is able to mine the correct and complete set of all
pairs of exception rules.

Fig. 2. Number of rules according to γ1 (left) and δ1 (right)

Figure 2 depicts the number of pairs of rules according to γ1 (left part of the
figure) and δ1 (right part of the figure). We tested several combinations of the
parameters. As expected, the lower γ1 is, the larger the number of pairs of
exception rules. Note that the decreasing of the curves is approximatively the
same for all the combinations of parameters. The result is similar when δ1 varies
(right part of Figure 2): the higher δ1 is, the larger the number of pairs of
exception rules (when δ1 increases, the confidence decreases so that there are
more common sense rules). Interestingly, these curves quantify the number of
pairs of exception rules according to the sets of parameters. Some cases seem
to point out pairs of rules of good quality. For instance, with (γ1 = 20, δ1 =
5, γ2 = 1, δ2 = 0), we obtain 25 pairs of rules with a common sense rule having a
confidence value greater than or equal to 83% and an exact exception rule (i.e.,
confidence value equals 100%). Moreover, our approach enables us in a natural
way to add new properties such as the control of the sizes of rules. If the user
3 www.ics.uci.edu/~mlearn/MLRepository.html



wants that the number of items added to an exception rule remains small with
regards to the size of the common sense rule, it can be easily modeled by a new
constraint: for instance, the number of added items to an exception rule must
be lower than the minimum of a number (e.g., 3) and the size of the common
sense rule. It highlights the flexibility of our approach.

Fig. 3. Runtime according to the number of intervals of the condensed representations

Figure 3 details the runtime of our method according to the number of in-
tervals of the condensed representation, i.e., the size of the condensed represen-
tation. In this experiment, for each dot of the curve, the four variables have the
same domain and thus the same number of intervals. Obviously, the larger the
number of intervals is, the higher the runtime (note that we use a logarithmic
scale on the Y axis). In the case of exception rules, it is interesting to note that
the runtime decreases when the quality of the exception rule pairs increases. In-
deed, looking for common sense rules with high frequency and reliable exception
rules leads to infer local constraints giving more powerful pruning conditions
and thus less intervals. Table 3 indicates the number of intervals of the vari-
able X2 in the condensed representation (see Section 4.3) according to several
local constraints. It shows the interest of an approach based on local constraint
mining.

Local constraint Number of intervals in DX2

- 3002

I ∈ X2 1029

I ∈ X2 ∧ freq(X2) >= 20 52

I ∈ X2 ∧ freq(X2) >= 25 32

Table 3. Number of intervals according to several local constraints (case of DX2)



6 Discussion

In this section, we discuss current research that is related to our approach. The
key point is the set union operator for set CSPs and the techniques which could
be developed to improve this step.

Set Union vs convexe closure for set Intervals. In order to perform bound con-
sistency filtering, set CSP solvers approximate the union of two set intervals by
their convex closure. The convex closure of [lb1 .. ub1] and [lb2 .. ub2] is defined
as [lb1∩ lb2 .. ub1∪ub2]. So, if filtering is applied a lot of times on a same variable
domain, this domain could reach the whole set [∅ .. I] and specific information
gathered during the search would be lost whereas this information is useful to
limit the size of intervals.

To circumvent this problem, for each variable Xi with the condensed represen-
tation CRi =

⋃
p(fp, Ip), a search is successively performed upon each Ip. This

approach is sound and complete and we use it in our experiments. Nevertheless,
with this method, we do not fully profit from filtering because removing a value
is propagated only in the treated intervals and not in the whole domains. It ex-
plains the results of Section 5 showing that the runtime strongly increases when
the number of intervals increases.

Other solutions: a first alternative solution consists of implementing a set in-
terval union operator in the kernel of the solver. Another solution is to use
non-exact condensed representations to reduce the number of produced inter-
vals such as a condensed representation based on maximal frequent itemsets.
The number of intervals representing the domains will be smaller, but, due to
the approximations, it should be necessary to memorize forbidden values.

7 Conclusions and future work

In this paper we have presented a new approach for pattern discovery. Its great
interest is to model in a flexible way any set of constraints combining several
local patterns. The complete and sound set of patterns satisfying the constraints
is mined thanks to a joint cooperation between a solver on set constraint pro-
gramming which copes with global constraints and a solver on local patterns to
take benefit on the well-mastered methods on local constraint mining. We think
that it is this combination between the local and global levels which enables us
the discovery of such patterns. Experiments show the feasibility of our approach.

Further work is to introduce the universal quantification (∀) that classic
CSPs are unable to manage. This quantifier would be precious to model global
constraints such as the peak constraint (the peak constraint compares neighbor
patterns and a peak pattern is a pattern whose all neighbors have a value for a
measure lower than a threshold). For that purpose, we think that recent works
as Quantified Constraints Satisfaction Problems (QCSP) [3, 20] could be useful.
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