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Abstract

The discovery of biologically interpretable knowledge
from gene expression data is one of the largest contempo-
rary genomic challenges. As large volumes of expression
data are being generated, there is a great need for auto-
mated tools that provide the means to analyze them. How-
ever, the same tools can provide an overwhelming number
of candidate hypotheses which can hardly be manually ex-
ploited by an expert. An additional knowledge helping to fo-
cus automatically on the most plausible candidates only can
up-value the experiment significantly. Background knowl-
edge available in literature databases, biological ontolo-
gies and other sources can be used for this purpose. In this
paper we propose and verify a methodology that enables to
effectively mine and represent meaningful over-expression
patterns. Each pattern represents a bi-set of a gene group
over-expressed in a set of biological situations. The origi-
nality of the framework consists in its constraint-based na-
ture and an effective cross-fertilization of constraints based
on expression data and background knowledge. The result
is a limited set of candidate patterns that are most likely in-
terpretable by biologists. Supplemental automatic interpre-
tations serve to ease this process. Various constraints can
generate plausible pattern sets of different characteristics.

1 Introduction

The most usual way of gene-expression analysis is based
on clustering [12]. The genes are grouped according to
similarity in their gene expression profiles, the clusters are
searched to find those containing genes with common bi-
ological properties, such as the presence of common up-
stream promoter regions or involvement in the same biolog-
ical processes. However, genes rarely exhibit a similar ex-
pression profile across a wide range of biological situations
which is the underlying idea of hierarchical or K-means
clustering. Biclustering of gene expression data (also called
co-clustering or two-way clustering) is a later methodol-

ogy for the identification ofbi-sets, i.e., gene groups that
show a coherent expression profile across a subset of situ-
ations [25]. It can be understood as a natural methodology
screening for genes that are functionally related, affected by
the same drug or pathological condition, or genes that par-
ticipate in the same pathways being potentially co-regulated
by a small group of transcription factors [31].

Recent works on pattern mining improve the discovery
of similar bi-sets by using significant constraints to focus
the search [7, 13]. The raw expression data are binarized,
typically in order to encode the over-expression. However,
various binary properties such as under-expression or strong
variability can also be studied. Although this binariza-
tion seems to cause an indispensable loss of information,
when dealing with SAGE (Serial Analysis of Gene Expres-
sion) [30] data it can be rather advantageous. The obvious
reason is a significant tag frequency error rate which turns
out to be especially high for low frequency tags [7].

In this text we understand the termpatternas a set of
tags over-expressed in a set of biological situations. This
definition is quite vague and covers an extreme number of
trivial patterns that are a priori uninteresting, e.g., a single
tag over-expressed in a single situation. That is why we de-
fine additional constraints helping to focus on the most in-
teresting fraction of the pattern space only, so-calledplau-
sible patterns. First, we try to discover patterns that are
large enough. They must have a certain minimum length
(i.e., contain a certain minimum number of tags) and fre-
quency (i.e., cover a certain minimum number of situa-
tions). These are typical constraints used in the field of as-
sociation rule mining [13]. They have also been applied in
the domain of genomics [21]. As they are based purely on
the boolean data being mined we will refer to them as the
internal constraints. But, in this paper, to better achieve a
cross-fertilization with the background knowledge, we do
not restrict the search to maximum rectangles (i.e., closed
patterns [13]) as it is usually done. This requires powerful
data mining techniques (see Section 3).

Second, our interest lies in patterns that are biologically
relevant. Generally speaking, every pattern interpretable



by biologists might be considered interesting. More pre-
cisely, the interesting patterns are those exhibiting a general
characteristic common for the tags and/or situations con-
cerned (or at least their sub-sets). These constraints can in
no case be inferred from the expression data. We refer to
them as theexternal constraintsand infer them from the ex-
ternal knowledge (in this text we consider the terms back-
ground and external knowledge as synonyms). An effec-
tive use of background knowledge in analysis and interpre-
tation of expression data is a popular research topic nowa-
days. However, the main effort is aimed at clustering and
thus integration of the biological knowledge into the statisti-
cal data analysis framework. The background knowledge is
typically used to annotate the expression based clusters for
statistically over-represented (or under-expressed) terms or
categories [14, 19]. It can also be used to cluster the genes
immediately [10] or to perform meta-clustering where the
expression and external datasets are combined prior to clus-
tering [15]. Among the approaches distinct from clustering,
[33] deals with gene annotations as with relational logic fea-
tures or [27] uses text mining to filter the most promising
disease gene candidates.

In this paper, we work with two principal external data
sources, freetexts and gene ontologies (GOs). In the area of
freetexts we have been inspired mainly by [10, 15]. Both
of them deal with the term-frequency vector representa-
tion which is a simple however prevailing representation of
texts. This representation allows for an annotation of a gene
group as well as a straightforward definition of gene sim-
ilarity. In the area of gene ontologies we stem from [19],
the gene similarity results from the genes’ positions in the
molecular functional, biological process or cellular compo-
nent ontology. The gene similarity is instrumental to the
definition of constraints coming later on.

To our best knowledge, there is no substantial work
on constraint-based pattern mining with the constraints in-
ferred from the genomic background knowledge. Using ex-
ternal constraints in the context of pattern mining as well as
a synergic combination of internal and external constraints
are the main contributions of this paper.

To sum up, a promising, i.e., plausible, candidate pattern
could have the following structure: "Tags A, B, C and D are
jointly over-expressed in the biological situations 1, 2, 3and
4." The supplemental interpretation can be such as: "Tags
A, B and C share the biological function F and in the liter-
ature they often co-occur with terms T1, T2 and T3, while
tag D has no information attached yet. The biological situa-
tions 1-4 represent cancerous tissues taken from organs O1
or O2." Potentially new knowledge gained from the plausi-
ble pattern can be two-fold. Firstly, function F (and/or terms
T1, T2, T3) may truly interact with the cancerous context of
the situations and secondly, tag D can prospectively share
the same function F with the other tags. The main goal is
to transform these verbal statements into formal constraints

(and vice versa) and employ them within an effective pat-
tern mining framework. Section 4 depicts such plausible
patterns.

Section 2 summarizes the datasets, the way they were
generated, preprocessed and utilized. It also provides the
overall links among these datasets. Section 3 briefly in-
troduces the constraint-based pattern mining tool MUSIC.
The section also shows how to formalize constraints within
the genomic domain under consideration. Section 4 demon-
strates that the pattern sets reduced by the external con-
straints can serve as an enriched source of potential bio-
logical "nuggets". They are highlighted and interpreted. Fi-
nally, Section 5 summarizes the whole methodology, dis-
cusses its strengths and weaknesses and future work.

2 Raw data treatment and interaction

In this paper we stem from several different data sources.
They greatly vary in their origin, a way of preprocessing
and application. First of all, there is a SAGE dataset repre-
senting the data to be mined (a rectangular matrix: tags vs.
situations). The background knowledge for the tags is ex-
tracted from textual resources and gene ontologies. Both of
them define a presumed tag similarity as well as they pro-
vide an explanation of the selected patterns. Finally, there is
a brief textual information on each SAGE library, i.e., each
biological situation contained in SAGE. Such information
can help to assume similarity among situations covered by
the patterns and also to interpret them.

2.1 SAGE data

Like microarrays, the SAGE technique aims to measure
the expression levels of genes in a cell population [30].
It is performed by sequencing tags (short sequences of 14
to 21 base pairs (bps)) which are theoretically specific of
each mRNA. 207 SAGE libraries (i.e. 207 biological sit-
uations or experiments) were downloaded from the NCBI
web site [3]. To eliminate putative sequencing errors, a pre-
treatment of the data described in [7] was applied, giving
a set of 125985 14 bp tags. Tags were identified thanks to
Identitag [16], using RefSeq mRNA sequences. The unam-
biguous tags identified with RefSeq were selected, leaving
a set of 11082 tags. A 207x11082 gene expression matrix
was built. There is also its sub-matrix which confines to
the tags belonging to the minimal transcriptome [29]. It is
based on 447 tags found and we refer to it as the minimum
transcriptome (expression) matrix. Both the matrices were
binarized to encode the over-expression of each tag using
the MidRange method described in [7].

2.2 Texts and their preprocessing

To access the gene annotation data for every tag con-
sidered, RefSeq identifiers were translated into EntrezGene



identifiers [2]. The mapping approached 1 to 1 relation-
ship. There were only 11 unidentified RefSeqs, 24 Ref-
Seqs mapped to more than 1 id and 203 ids appeared more
than once. Knowing the gene identifiers, the annotations
were automatically accessed through hypertext queries to
the Entrez Gene database [3] and sequentially parsed by
the method stemming from [33]. The non-trivial textual
records were obtained for 6302 ids which makes 58% of the
total amount of 10858 unique ids (3926 genes had a short
summary, 5109 had one abstract attached at least).

The gene textual annotations were converted into the
vector space model. A single gene corresponds to a sin-
gle vector, whose components correspond to a frequency
of a single term from the vocabulary. This representation
is often referred to asbag-of-words[23]. The particular
vocabulary consisted of all thestemmedterms [4] that ap-
pear in 5 different gene records at least. The most frequent
terms were manually checked and too general terms (such
as gene, protein, human etc.) were removed. The result-
ing vocabulary consisted of 19373 terms. The similarity
between genes was defined as the cosine of the angle be-
tween the correspondingterm-frequency inverse-document-
frequency(TFIDF) [23] vectors. TFIDF representation sta-
tistically considers how important a term is to a gene record.
A similarity matrix for all the tags was generated. The un-
derlying idea is that a high value of two vectors’ cosine
(which means a low angle among two vectors and thus a
similar occurrence of the terms) indicates a semantic con-
nection between the corresponding gene records and conse-
quently their presumable connection. Although this model
is known to generate false positive relations for the sake of
utilization of the same terms in a different context as well
as false negative relations mainly for the sake of synonyms,
it is feasible and surprisingly often fitting.

2.3 Gene ontology

The genes can also be functionally related on the basis
of their GO terms. The rationale sustaining this method
is that the more GO terms the genes share, and the more
specific the terms are, the more likely the genes are to
be functionally related. [19] defines a distance based on
the Czekanowski-Dice formula, the methodology is imple-
mented within the GOProxy tool of GOToolBox [1].

The original RefSeq tag identifiers were translated into
UniProt ids [5]. Out of 11082 tags there were 7670 known
ids. As this set is too large to be processed by GOTool-
Box we confined to the minimum transcriptome dataset,
366 RefSeqs could be translated here. The resulting ids
have been used by GoToolBox to generate two tag similar-
ity matrices. For the biological process ontology there were
254 valid entries while 271 tags could be diagnosed within
the molecular function ontology.

The GO terms themselves could be parsed from the
records obtained in the previous subsection.

2.4 Description of libraries

There is a short textual annotation of the length about 10
terms attached to each SAGE library. Although these an-
notations represent very short documents, their vocabulary
is quite compact. Consequently, they can be processed in
the same way as the tag textual documentation. In this case,
when considering all the terms that appear in 3 and more
libraries the vocabulary consists of 83 terms. The situation
similarity matrix was also generated.

2.5 General interaction among datasets

One of the basic questions rising prior to mining for the
patterns is whether the datasets described above are mutu-
ally interconnected. Can we say that a group of tags that are
functionally similar also tends to be co-expressed? Is there
any relation between GO and textual definitions of similar-
ity? Do similarly annotated situations tend to have similar
expression profiles? Although the interconnection between
the expression and external data is not a necessary condition
to start the mining process, the positive answers would sup-
port the overall logic of future experiments – the application
of the similarity constraints should also lead to the compact
expression data regions.

Correlation can serve as a general interconnection mea-
sure between expression and similarity data and also simi-
larity datasets themselves. In order to get the matrices of the
same dimension, the tag correlation matrix is derived from
the expression data first. Then, its correlation with the tag
similarity matrices is calculated. An analogical process is
applied when dealing with the situations. Figure 1 shows
that there is a statistically significant correlation amongall
the considered datasets1. Nevertheless, the correlation val-
ues suggest a weak relationship only. When comparing the
individual values, SAGE seems to be most strongly linked
to the variance in situations. The interpretation may be such
that SAGE deals with very different biological conditions –
normal, cancerous or AIDS samples from different organs
and individuals of different gender and age. They conse-
quently vary in their expression profiles. The influence of
tag similarity seems to be less striking. The similarity mea-
sure based on texts does not seem to be less valuable nor
redundant with respect to the GO similarities.

3 Constraint-based pattern mining

A constraintis a pattern restriction defining the focus of
search, in our case interestingness. Gene expression data
give rise to new problems w.r.t. the standard application
of pattern mining with constraints since the overall com-
plexity is exponential with the number of genes which is

1The minimum transcriptome matrix underlies this experiment.



Figure 1. Correlations among the datasets.

large. A simple approach is first to mine all potentially inter-
esting patterns satisfying an anti-monotone constraint (e.g.,
the usual constraint of frequency) because this class of con-
straints can be efficiently pushed and second to filter the
resulting set of patterns by the other constraints. However,
this naïve filtering approach fails due to the huge number of
patterns. Existing scalable techniques [20, 22] are limited to
particular kinds of constraints (closed patterns,δ-free pat-
terns). In this paper we apply a more general framework
which is based on a rich declarative language ofprimitive-
based constraintsenabling an effective internalpruningand
a condensed output representation based onintervals. Ex-
periments (Section 4) show its effectiveness.

We use the tool MUSIC (Mining with a User-SpecifIed
Constraint) [26] which discovers soundly and completely
all the patterns satisfying the specified set of constraints.
As MUSIC’s theoretical properties cannot be given here the
main attention is paid to its basic features applicable within
the genomic context. A set of syntactic and aggregate prim-
itives on a patternx enables to specify a broad spectrum
of constraints in a flexible way. These primitives and their
combinations form the necessary condition of pattern in-
terestingness. For instance, the product of two primitives
length(x) × frequency(x) may address the patterns hav-
ing a certain minimum length (i.e., containing a minimum
number of tags) and frequency (i.e., covering a minimum
number of situations). We refer to it asarea(x).

The tag similarity matrices provide a transparent back-
ground for external interestingness definitions. We deal
with primitives such assumsim(x) denoting the similar-
ity sum over the set of tagsx or insim(x, min, max) for
the number of tag pairs whose similarity lies betweenmin
andmax. As we deal with a certain portion of tags with-
out any information, there are primitives that distinguish
between zero similarity and its missing value. The primi-
tive svsim(x) gives the number of tag pairs belonging to
x whose mutual similarity is valid andmvsim(x) stands
for its counterpart, i.e., the missing interactions when one
of the tags has an empty record within the given external
representation.

The primitives can make compounds. Among many
others,sumsim(x)/svsim(x) makes the average similar-
ity, insim(x, thres, 1)/svsim(x) gives a proportion of the
strong interactions (similarity higher than the threshold)
within the set of tags,svsim(x)/(svsim(x) + mvsim(x))
can avoid patterns with prevailing tags of an unknown func-
tion. Relational and logical operators enable to create the
final constraint, e.g.,C1 ≥ thres1 andC2 6= thres2 where
Ci stands for an arbitrary compound or primitive. Con-
straints can also be simultaneously derived from different
external tag and/or situation datasets.

The efficiency of MUSIC lies in a safe pruning of the
pattern space by pushing the constraints. The pruning con-
ditions are based on intervals gathering several patterns.
Whenever it is computed that all the patterns included in
the interval[x, y] simultaneously satisfy (or not) the con-
straint, the interval is positively (negatively) pruned with-
out enumerating all its patterns [26]. The output of MUSIC

enumerates the intervals satisfying the constraint. Such a
condensed representation improves the output lucidity and
enables to easily compute theselectivityof the constraint.
Selectivity is a proportion of patterns satisfying the con-
straint. It constitutes one of its key characteristics.

4 Experiments

This section familiarizes with the practical impact of the
external constraints. It demonstrates why a purely internal
constraint set can hardly deliver a set of patterns that is com-
pact and interpretable. It formulates examples of external
constraints which can localize biologically interesting pat-
terns. One of the outcomes is biologically interpreted in
depth. Finally a general scope of the external constraints is
discussed.

4.1 Constraint selectivity

Figure 2 shows how many patterns and intervals satisfy
the increasingarea constraint. To reject useless "longish"
patterns, the minimum pattern length was set to 4 and fre-
quency to 5 (patterns such as 1× 50, 30× 2, etc. are not
considered). Obviously, the patterns of a reasonable area
are too numerous to be manually explored. For an exam-
ple, there are 2090 intervals and 73378 patterns having their
area larger than 50. Let us note that the largest area patterns
are very likely to be trivial, bringing no new knowledge,
and it makes little sense to focus purely on them. At the
same time, the selected binarization is modest and gener-
ates rather sparse matrices. For other binarization types the
explosion of patterns can be even faster.

Simultaneous application of internal and external con-
straints may help to further reduce the patterns while keep-
ing the interesting ones. The selectivity of selected exter-
nal constraints is shown in Figure 3. The pruning starts
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Figure 2. Selectivity of the area constraint.

with 46671 patterns that are longer than 3 and more fre-
quent than 5. The graphs demonstrate that if both similarity
(sumsim or insim) and existence (svsim) are thresholded,
very compact sets of patterns can be reached.

4.2 Results and their interpretation

The experimental setting started with all the large pat-
terns that have a satisfactory average similarity among
mostly known tags (see the measuressim1(x) ≥ 0.025
andsim3(x) ≥ 0.7 in Figure 3). It was immediately ap-
parent that most of the extracted bi-sets were harboring
genes encoding ribosomal proteins, and proteins involved
in the translation process. Such a trend has already been de-
scribed, although in a different dataset [7], and we therefore
decided to focus on some other biological functions. We
further focused on bi-sets that did not harbor ribosomal pro-
teins. This left us with a set of 19 bi-sets that were manually
inspected. On the basis of their automatic explanation, we
found the following bi-set: (KHDRBS1, NONO, TOP2B,
FMR1) & (48, 52, 54, 56, 62, 65). There were 74 charac-
teristic terms adjoined to genes, 8 terms characterized the
situations. It is of biological interest for these reasons:

• Three out of the four genes (KHDRBS1, NONO and
FMR1) have been shown to encode proteins that display an
RNA-binding activity [18, 24, 32]. The term "RNA-bind"
appears in the list of terms associated with this bi-set. Of
those genes, two (KHDRBS1 and NONO) have been more
specifically shown to be involved in RNA splicing.

• The fourth gene (TOP2B) encodes a topoisomerase [9].
It is interesting to note that the NONO gene product was
shown to have a role in DNA unwinding [24], an activ-
ity where it is known to interact functionally with Topoi-
somerase 1 (a member of the family to which TOP2B be-
longs). Moreover an isoform of TOP2B, TOP2A, has also
been found differentially expressed in medulloblastoma
versus normal SAGE libraries [8]. The authors also note

the existence of various anticancer drugs directed against
TOP2A. These drugs might have an effect on the TOP2B
isoform, enhancing the anticancer effect. A topoisomerase
II inhibitor was also shown to display a significant antitu-
mor activity in a medulloblastoma xenograft [28].

• A recent paper using microarray has demonstrated the
importance of RNA splicing processes for adult neuroge-
nesis [17]. The KHDRBS1 gene was found in this study
among the genes important for adult neural stem cells.

• All of the situations in which these genes are over-
expressed (48, 52, etc.) are medulloblastomas. These are
very aggressive brain tumors in children. There is an in-
creasing body of evidence that the most aggressive cells
within a medulloblastoma behave as brain stem cells [6, 11].

Altogether the biological hypothesis that can be made
from this bi-set is as follows: RNA binding in general and
RNA splicing in particular, somehow connected with ge-
nomic DNA conformation via TOP2B, is as essential for
medulloblastomas as it is for normal adult nervous stem
cells. Targeting this RNA binding activity, might prove
beneficial for medulloblastoma treatment, just like topoiso-
merase II inhibition was shown to be.

5 Conclusion

The paper describes a flexible environment for analysis
of plausible biological patterns. It is computationally effec-
tive and enables interactive mining that exploits available
background knowledge. The paper demonstrates a practical
example of interaction that proved to be able to generate a
new biological hypothesis that can be tested experimentally,
and that may have clinical implications.
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Future work covers several possible areas. A larger text
corpus as well as a more sophisticated textual representa-
tion can be used. Switching from abstracts to full texts
and employment of lexical parsing or a graph representation
of texts may improve the notion of similarity. The direct
textual constraints as e.g., annotation(x)<>’ribosomal’can



help to avoid a specific group of tags that may flood the pat-
tern set being out of scope of the biological interest. Fault
tolerant patterns that accept a small portion of zeroes in the
binarized over-expression rectangles could help to deal with
noise and avoid breaking the natural large patterns. Cluster-
ing of patterns can ease the biological analysis.
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