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Abstract

Orphanet provides an international web-based knowl-
edge portal for rare diseases including a collection of re-
view articles. However, reviews and literature monitoring
are manual. Thus, new documentation about a rare disease
is a time-consuming process and automatically discovering
knowledge from a large collection of texts is a crucial is-
sue. This context represents a strong motivation to address
the problem of extracting gene–rare diseases relationships
from texts. In this paper, we tackle this issue with a cross-
fertilization of information extraction and data mining tech-
niques (sequential pattern mining under constraints). Ex-
periments show the interest of the method for the documen-
tation of rare diseases.

1 Introduction

Rare diseases are a major public health issue. A rare
disease (RD) is a disease affecting fewer than 1 in 2,000
persons. There are between 6,000 and 8,000 RDs affect-
ing about 30 million people in Europe and much more in
the rest of the world. For most of RDs, information is of-
ten scattered and scientists need to share their research to
work more efficiently. For that purpose, Orphanet1 provides
an international web-based knowledge portal for rare dis-
eases including a collection of review articles on RDs which
is expert-authored and peer-reviewed. However, reviews
and literature monitoring are done manually and rely on a
number of annotators dealing with rare genetic pathologies.
Thus, obtaining new documentation about a RD is a time-
consuming process and automatically discovering knowl-
edge from a large collection of texts is a crucial issue. This
context represents a strong motivation to address the prob-
lem of extracting gene–RD relationships from text collec-
tion such as the PubMed repository dealing with more than

1www.orphanet.org

21 million biomedical publications. In this paper, we tackle
this issue with a cross-fertilization of information extraction
and data mining techniques.

Natural Language Processing (NLP), and information
extraction in particular, aim to provide accurate parsing
to extract specific knowledge such as named entities (e.g.,
gene, disease) and relationships between the recognized en-
tities (e.g., gene–gene interactions [9], disease-treatment re-
lations [1]). Those NLP approaches require rules such as
regular expressions for surface searching [7] or syntactic
patterns [10, 6]. When the rules are handcrafted, those
methods are then time consuming and also very often de-
voted to a specific corpus [8].

In contrast, machine learning methods such as support
vector machines or conditional random fields [9] are based
on automatic processes and then are less time consuming
than NLP methods. Although they provide good results on
accuracy, they still suffer from limitations. Their outcomes
are not really understandable by an end-user, nor they can
be used as linguistic patterns in NLP systems. Further-
more, the annotation process of training corpora requires
a substantial investment of time, and cannot be reused in
other domains (new corpora must be annotated for new do-
mains) [8].

Recent works take advantage of an hybridization of data
mining and NLP techniques. Data mining enables the dis-
covery of implicit, previously unknown, and potentially
useful information from data [5]. For instance, in [3]
a method is proposed to automatically discover linguistic
rules to extract relationships between named entities in new
corpora. That approach is not supervised and does not need
syntactic parsing nor external resources except the training
corpus. It relies on extraction of frequent sequential pat-
terns where a sequence is a list of literals called items, and
an item is a word (or its lemma) within textual data.

In this paper, we show the usefulness of sequential pat-
terns in information extraction tasks and discovery of gene–
RD relationships. We propose a new method based on se-
quential patterns of itemsets in order to extract more ex-



pressive linguistic patterns than ones extracted with single-
items as in [3]. It means that a word can be represented
by a set of features conveying several pieces of informa-
tion (e.g., words, lemma) and not only a single informa-
tion. That is a major step because in many applications
we need to combine different levels of abstraction (e.g.,
words, lemma, part of speech tags) and express informa-
tion according to different generic levels. For instance, in
Section 3.2, we will see the interest of a pattern such as
〈(mutation NNS) (IN) (isocitrate NN) (GENE)
(occur V BP ) (DISEASE)〉 which combines the lemma
and category levels. Moreover, the user can easily lead the
search according to his interest and/or the application tar-
get thanks to constraints. We provide several examples of
constraints in the context of RD enabling us to discover rele-
vant linguistic patterns and thus gene–RD relationships. We
have conducted some experiments to extract gene-RD rela-
tionships from PubMed articles.

The rest of the paper is organized as follows. Preliminar-
ies about sequential pattern mining are given in Section 2.
Section 3 presents the method to extract relations between
genes and rare diseases in biomedical texts. Finally, experi-
ments described in Section 4 show the interest of the method
for the documentation of RDs.

2 Preliminaries: Sequential Pattern Mining

Sequential pattern mining is a data mining technique in-
troduced in [2] to find regularities in a sequence database.
There are a lot of algorithms to extract sequential pat-
terns [12, 13, 14].

In sequential pattern mining, an itemset I is a set of lit-
erals called items. For example, (a b) is an itemset with
two items: a and b. A sequence S is an ordered list
of itemsets, denoted by s = 〈I1 . . . Im〉. For instance,
〈(a) (a b c) (a c) (d)〉 is a sequence of four itemsets.
A sequence S1 = 〈I1 . . . In〉 is included in a sequence
S2 = 〈I ′1 . . . I ′m〉 if there exist integers 1 ≤ j1 < ... <
jn ≤ m such that I1 ⊆ I ′j1 ,..., In ⊆ I ′jn . The sequence S1

is called a subsequence of S2, and we note S1 � S2. For
example, 〈(a)(a c)〉 is included in 〈(a)(a b c)(a c)(d)〉. A
sequence database SDB is a set of tuples (sid, S), where
sid is a sequence identifier and S a sequence. For instance,
Table 1 depicts a sequence database of four sequences. A
tuple (sid, S) contains a sequence S1, if S1 � S. The sup-
port2 of a sequence S1 in a sequence database SDB, de-
noted sup(S1), is the number of tuples in the database con-
taining S1. For example, in Table 1 sup(〈(a b)(c)〉) = 2,
since Sequences 1 and 3 contain 〈(a b)(c)〉. A frequent se-
quential pattern is a sequence such that its support is greater

2Note that the relative support is also used:
sup(S1) =

|{(sid, S) | (sid, S) ∈ SDB ∧ (S1 � S)}|
|SDB| .

Sequence identifier Sequence
1 〈(a) (a b c) (a c) (d)〉
2 〈(a d) (c) (b)〉
3 〈(a b) (d) (b) (c)〉
4 〈(a d) (b) (b)〉

Table 1. Example of a sequential database.

or equal to a given support threshold minsup.
The set of frequent sequential patterns can be very large.

Pattern condensed representations, such as closed sequen-
tial patterns [13], have been proposed in order to eliminate
redundancy without loss of information. A frequent sequen-
tial pattern S is closed if there is no other frequent sequen-
tial pattern S′ such that S � S′ and sup(S) = sup(S′).
For instance, with minsup = 2, the sequential pattern
〈(a b)〉 from Table 1 is not closed because sup(〈(a b)〉) =
sup(〈(a b)(c)〉) and 〈(a b)〉 � 〈(a b)(c)〉.

The constraint-based pattern paradigm [4] brings useful
techniques to express a user’s interest in order to focus on
the most promising patterns. A very widespread constraint
is the frequency. However, it is possible to define many
other useful constraints such as the gap constraint. A se-
quential pattern with a gap constraint [M,N ], denoted by
P[M,N ], is a pattern such as at least M itemsets and at most
N itemsets are allowed between every two neighbor item-
sets, in the matched sequences. For instance, in Table 1,
P[0,2] = 〈(a)(c)〉 and P[1,2] = 〈(a)(c)〉 are two patterns
with gap constraints. P[0,2] matches three sequences (1, 2
and 3) whereas P[1,2] matches only two sequences (1, 3).
Indeed, in Sequence 2 there is no itemset between the item-
set that contains a and the itemset that contains c.

3 Discovering Relations between Genes and
Rare Diseases

In this section, we present our global approach to dis-
cover relations between genes and rare diseases (Sec-
tion 3.1). Then, we define constraints to extract sequential
patterns (Section 3.2).

3.1 Global Process

Figure 1 provides a global view of the process. There are
two main steps in the method: extraction and validation of
sequential patterns as linguistic patterns and their applica-
tion to discover gene–RD relationships.

The sequence database is built from a training corpus.
Sequences are sentences of the training corpus having at
least one rare disease and one gene. Thanks to the POS
tagging step, each word is replaced by an itemset containing
information about the word: the lemma of the word and



Figure 1. Global view of the method to extract gene–RD relationships.

its grammatical categories (Part-Of-Speech (POS) tags3).
Table 2 gives an excerpt of a sequence database with
three sequences 4. For instance, in Sequence 1 the verb
“conclude” is replaced by the itemset (conclude V BP ),
i.e. its lemma “conclude” and its grammatical category:
a verb, non-third person singular, present tense. Then,
all gene names are replaced by the general item GENE
and in the same way all disease names are replaced by
the item DISEASE. Note that unlike machine learning
based approaches, the training corpus have not annotated
relations (e.g. gene-RD relations). Once the sequence
database built, sequential patterns (see Section 3.2) under
constraints are extracted. This part of the method is
detailed in the next section. In order to exclude redundancy
between patterns, we used closed sequential patterns
instead of frequent sequential patterns. In addition, a
word is described as set of features, providing different
kinds of information. This word representation allows to
combine levels of abstraction, and to build generic patterns
(i.e. patterns having only grammatical categories, as
〈(NNS)(IN)(NN)(GENE) (V BP ) (DISEASE)〉)
and more specific (i.e. patterns hav-
ing grammatical categories and lemma, as
(mutation NNS) (in IN) (isocitrate NN) (GENE)
(occur V BP ) (DISEASE)〉. Then, an expert filters
out patterns which are not relevant as linguistic patterns
to discover relations between genes and RD in texts. The
validated patterns are then applied on the testing corpus to
discover new gene–RD relationships.

3DT: Determiner, IN: Preposition or subordinating conjunction,
JJ: Adjective, NN: Noun, RB: Adverb, VB: Verb. The com-
plete list of part-of-speech tags is available at http://www.ims.uni-
stuttgart.de/projekte/corplex/TreeTagger/

41. “We conclude that VCP is essential for maturation of ubiquitin-
containing autophagosomes and that defect in this function may contribute
to IBMPFD pathogenesis.” 2. “Somatic mutations in isocitrate dehydro-
genase 1 (IDH1) and IDH2 occur in gliomas and acute myeloid leukaemia
(AML).” 3. “Osteogenesis imperfecta is normally caused by an autosomal
dominant mutation in the type I collagen genes COL1A1 and COL1A2.”

3.2 Constraints to Model Linguistic
Knowledge

The sequential pattern mining step is done under con-
straints which enables to model some linguistic knowledge
and gives prominence to the most significant patterns by fil-
tering the specific ones. The goal is to retain sequential pat-
terns which convey linguistic regularities (e.g., gene–rare
disease relationships). Moreover, the patterns are closed
patterns to avoid redundancy (cf. Section 2).

We have previously introduced two usual constraints: the
frequency and the gap. We define in this section other
useful constraints in order to discover relations between
genes and rares diseases. The membership constraint en-
ables to filter out sequential patterns that do not contain
some selected items. For example, we express that the ex-
tracted patterns must contain at least two items: GENE
and DISEASE. The min length constraint is useful to
remove sequential patterns that are too small with respect
to the number of itemsets (number of words) to be rele-
vant linguistic patterns. The max scope constraint allows
to set the maximal number of itemsets between the first
itemset and the last itemset of a sequential pattern in the
original sequences. Finally, the association constraint ex-
presses that all sequential patterns that contain the verb
item (VB) must contain a lemma in the same itemset. It
means that a pattern 〈(GENE)(V B)(DISEASE)〉 is not
correct with respect to the association constraint whereas
〈(GENE)(encode V B)(DISEASE)〉 is correct. That
constraint enables to prune too generic patterns (i.e. con-
taining only grammatical categories). Indeed, the interest-
ing information is the lemma associated with the VB item
which characterizes the gene-RD relation. All these con-
straints are defined in the mining step. Moreover, con-
straints such as maximal scope and gap can also be used in
the application step, possibly with different scope and gap
values (cf. Section 4.1).

In addition, we tackle a challenge of extracting closed



Sequence identifier Sequence
1 〈(we PP ) (conclude V BP ) (that IN) (GENE) (be V BZ) (essential JJ) (for IN)

(maturation NN) (of IN) (ubiquitin NN) (contain V BG) (autophagosomes NNS)
(and CC) (that DT ) (defect NN) (in IN) (this DT ) (function NN) (may MD)

(contribute V B) (to TO) (DISEASE) (pathogenesis NN)〉
2 〈(somatic JJ) (mutation NNS) (in IN) (isocitrate NN) (dehydrogenase NN)

(1 CD) (GENE) (and CC) (GENE) (occur V BP ) (in IN) (glioma NNS)
(and CC) (acute JJ) (myeloid JJ) (leukaemia NN) (DISEASE)〉

3 〈(DISEASE) (be V BZ) (normally RB) (cause V BN) (by IN) (an DT ) (autosomal JJ)
(dominant JJ) (mutation NN) (in IN) (the DT ) (type NN) (i NN)

(collagen NN) (gene NNS) (GENE) (and CC) (GENE)〉

Table 2. Excerpt of a sequential database from medical texts with three sequences.

sequential patterns of itemsets instead of sequential patterns
of single-items as in [3]. A word is represented by a set of
features conveying several pieces of information and not
only a single information. It allows to combine different
levels of abstraction and express information according to
different generic levels. For example, a generic pattern as
〈(NNS) (IN) (NN) (GENE) (V BP ) (DISEASE)〉
with only grammatical information can be
extracted, but a more specific pattern as
〈(mutation NNS) (IN) (isocitrate NN) (GENE)
(occur V BP ) (DISEASE)〉 which combines lemma
and grammatical information can also be extracted.

There exist in the literature many algorithms to extract
sequential patterns (e.g. [12, 14]) or closed sequential pat-
terns (e.g. [13]). But, to the best of our knowledge, there is
no algorithm mining closed sequential patterns of itemsets
under constraints. We address this issue by designing an
algorithm mining sequential patterns of itemsets under the
previously defined constraints. Details of the algorithm are
not given here because it is out of the scope of the paper.

4 Experiments

4.1 Settings

We created a corpus from the PubMed database us-
ing HUGO5 dictionary and Orphanet dictionary to query
the database to get sentences having these two kinds of
entities. 17,527 sentences have been extracted in this
way and we labelled the gene and RD names thanks
to the two dictionaries. For instance, the sentence
“<disease>Muir-Torre syndrome<\disease> is usually
inherited in an autosomal dominant fashion and associated
with mutations in the mismatch repair genes, predominantly
in <gene>MLH1<\gene> and <gene>MSH2<\gene>
genes.” contains one recognized RD, and two recognized
genes. From these 17,527 sentences, we randomly extract
200 sentences as a testing corpus, the remaining sentences
being the training corpus.

5www.genenames.org

The 200 sentences of the testing corpus have been evalu-
ated by an expert in order to identify sentences having gene–
RD relationships. Note that a sentence of this corpus can
have multiple gene–RD relationships or conversely none.
From the 200 sentences of this corpus, 189 gene–RD rela-
tionships have been identified by an expert and 132 couples
of gene-RD are not in relation.

Sequential Pattern Extraction Sequences of the SDB
are the sentences of the training corpus and are built as de-
scribed in Section 3.1. We carry out a POS tagging of the
sentences thanks to the TreeTagger tool [11]. The algorithm
was running with the following different constraint charac-
teristics to extract the closed sequential patterns:
• The minimal frequency (minsup). Three values of minimal
frequency have been experimented: 0.5% (88 sequences),
0,2% (35 sequences), and 0,05% (8 sequences).
• The gap. We have conducted experiments without and
with gap value (chosen empirically at [0,10]).
• The maximal scope. We set a maximal scope value at 20 to
reduce the number of extracted patterns: we assume that the
maximal number of itemsets between the first itemset and
the last itemset of patterns having gene–RD relationships is
almost 20 (corresponding to 20 words in the sentence).
• The minimal length. The aim of this constraint is to limit
the number of generic patterns. We tested (a) this constraint
with a value set to 4 and (b) without this constraint.
• The membership. Patterns must contain at least 3 items:
one gene, one RD, and one noun or one verb (expressing
the linguistic relation).
• The association. We want for each verb and noun its
lemma and its grammatical category.

Furthermore, we consider only binary relations, i.e. be-
tween only one gene and one disease.

Applying linguistic patterns We have applied on the
testing corpus the patterns extracted from the training cor-
pus under the gap and maximal scope constraints (called
“application gap” and “application scope”). Constraint val-
ues used during the application of patterns are: “no gap” or



min # of # of
minsup gap length val. pat. pat.
0.50% [0,10] all 6,346 24,888
0.50% [0,10] 4 6,310 22,794
0.50% no gap all 6,193 23,823
0.50% no gap 4 6,156 22,084
0.20% [0,10] all 54,512 133,533
0.20% [0,10] 4 54,429 126,777
0.20% no gap all 56,404 138,175
0.20% no gap 4 56,290 130,579
0.05% [0,10] all 416,786 1,530,085
0.05% [0,10] 4 416,533 1,493,914

Table 3. Number of patterns according to the
gap and the minsup constraints

minsup gap recall precision F-measure
0.50% [0.10] 0.37 0.67 0.48
0.50% no gap 0.46 0.69 0.55
0.20% [0.10] 0.50 0.65 0.56
0.20% no gap 0.53 0.64 0.58
0.05% [0.10] 0.65 0.66 0.65

Table 4. Experimental results for different gap
and minsup values

[0,10] ; maximal scope is set at 20 or is not used (i.e. ∞).

4.2 Results

Table 3 gives the number of extracted patterns according
to the constraint values (# of val. pat. is the number of
validated patterns and # of pat. the number of extracted
patterns). Minimal frequency constraint (minsup) is the
constraint having the most important impact on the number
of extracted patterns.

Results in Table 4 show the impact of the gap and the
frequency constraints on the detection of gene–RD relation-
ships. Decreasing minsup value improves the recall and
the f-measure (few patterns are produced when the minsup
value is high, see Table 3). In contrast, the gap [0,10]
decreases the recall and the f-measure whereas the preci-
sion is stable. Indeed, without gap constraint, more generic
patterns are extracted which substantially improves the re-
call. Finally the best f-measure is obtained with the lowest
minsup 0.05%.

Table 5 gives the impact of the minimal length constraint
which slightly improves the precision.

Then we study the impact of applying the constraints
during the pattern application step. Results are given in Ta-
ble 6. Application gap and application scope (denoted by
App. gap and App. sc. in Table 6) are respectively the gap

minsup min. length recall precision F-measure
0.50% all 0.37 0.67 0.48
0.50% 4 0.36 0.68 0.47
0.20% all 0.50 0.65 0.56
0.20% 4 0.48 0.67 0.56
0.05% all 0.65 0.66 0.65
0.05% 4 0.64 0.66 0.65

Table 5. Impact of the min. length constraint

minsup App. gap App. sc. rec. prec. F-measure
0.50% [0,10] all 0,33 0,68 0,44
0.50% [0.10] 20 0.25 0.68 0.37
0.50% no gap all 0.37 0.67 0.48
0.50% no gap 20 0.26 0.68 0.37
0.20% [0.10] all 0.48 0.66 0.55
0.20% [0.10] 20 0.35 0.66 0.46
0.20% no gap all 0.50 0.65 0.56
0.20% no gap 20 0.36 0.66 0.46
0.05% [0.10] all 0.60 0.66 0.63
0.05% [0.10] 20 0.41 0.65 0.50
0.05% no gap all 0.65 0.66 0.65
0.05% no gap 20 0.41 0.65 0.50

Table 6. Results on constrained patterns

and the scope constraints during the pattern application step
(the gap and the minimal length during the pattern extrac-
tion step are not taken into account). The scope is fixed
to 20. The app. scope constraint strongly degrades recall,
and also the f-measure. Otherwise, the app. gap slightly
increases precision, but decreases the recall.

4.3 Discussion

Table 7 summarizes the impact of the constraints. The
minimum frequency (minsup) and the minimum length are
the most relevant constraints respectively improving recall
and precision. This means that for a better precision, we
have to tune the minimum length constraint, and for a bet-
ter recall, we can use a lower value of minsup. The maxi-
mum precision obtained with the proposed method is 0.69
and the better recall is 0.65. These results are very close
to the results of other approaches in literature for simi-
lar tasks (.e.g. [1]). However, patterns are automatically
extracted unlike [1] where patterns are handcrafted. The
method allowed to extract relevant patterns, for instance:
〈(DISEASE)(be V BP ))(JJ)(IN)(factor NN)(GENE)〉,
〈(DISEASE) (be V BZ) (JJ) (DT ) (dominant JJ) (cause

V BN) (by IN) (DT ) (GENE)〉, or 〈(JJ) (DISEASE)

(superoxide NN) (dismutase NN) (GENE)〉.
We present, in the following, a qualitative analysis of

the errors. Some false negatives (affecting recall) can be
explained by the human expertise. Indeed, the expert vali-



Constraints recall precision
minsup Increase No impact
min. length Decrease Increase
gap Decrease No impact
App. gap Decrease No impact
App. scope Decrease No impact

Table 7. Impact of the constraints on the dis-
covering of gene–rare disease relationships

dated only patterns with notion of causality (i.e. gene cause
rare disease). That means a sentence as “We report on a
case of B-ALL of L3 morphology with MYC- IGH translo-
cation” cannot be discovered by the extracted patterns be-
cause important terms of the sentence are too generic and do
not express a causality. For instance, terms “report”, “case”,
“morphology” are too generic.

Some false positive cases (affecting precision) can be ex-
plained by errors in named entity recognition. We have dis-
covered some sentences having a gene identified as a dis-
ease. For instance, in the sentence “One of the most versa-
tile defence mechanisms against the accumulation of DNA
damage is nucleotide excision repair, in which, among oth-
ers, the Xeroderma pigmentosum group C (XPC) and group
A (XPA) proteins are involved.”. In this sentence, the Xero-
derma pigmentosum was identified has a disease instead of
a gene. Is it also possible that false positive cases come from
errors in the expertise of the testing corpus. Indeed, some
sentences have been judged negative by the expert whereas
they are positive. For instance, sentence “Small granular
SOD1-immunoreactive inclusions were found in spinal mo-
toneurons of all 37 sporadic and familial ALS patients stud-
ied, but only sparsely in 3 of 28 neurodegenerative and 2
of 19 non-neurological control patients.” has been judged
negative.

Finally, some false positives are due to negative forms,
which is a usual NLP problem. For instance, the sentence
“None of these patients had ATP13A2 sequence variants
likely to be causal for their disease, suggesting that muta-
tions in this gene are not common causes of Kufs disease”
is detected as positive by our method whereas the expert
tagged it as negative.

5 Conclusion

We have proposed a new method based on sequential
pattern mining to automatically discover relations between
genes and diseases in biomedical texts. Indeed, the ex-
tracted patterns are used as information extraction rules.
The method needs a training corpus where genes and rare
diseases are identified, but does not require a priori knowl-

edge on relations between genes and rare diseases. More-
over, the discovered linguistic patterns are understandable
by a human, and they can by easily changed or excluded if
necessary. We have experimented the method to discover
gene-RD relations from PubMed articles. Results show the
interest of the method and the role of the constraints, and
then leading to enhance documentation about rare diseases.
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