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Abstract. SAGE data provide the level-expression of a large amount of
genes and few biological situations. Geometrical dimensions of such con-
text make difficult the running of data mining methods. In this paper, we
propose a new method to extract all the δ-strong characterization rules
in large data sets. Such rules enable to characterize classes. We use this
method to mine the SAGE data and highlight a set of characterization
rules and few potential relevant genes which may be associated to cancer.

1 Introduction

A critical issue in genomic research is to derive relevant knowledge from huge
gene expression datasets generated at high throughput. Biologists are interested
in looking for associations (i.e., patterns) under several kinds of constraints like
for instance groups of co-regulated genes, also known as synexpression groups.
The ECML/PKDD 2005 discovery challenge deals with publicly available human
serial analysis of gene expression (SAGE) data. SAGE is an experimental tech-
nique designed to quantify gene expression. SAGE data provide expression values
for given biological situations (i.e., the lines) and given genes (i.e., the columns).
These datasets are characterized by a large number of columns (e.g., ten of thou-
sands of gene expressions) and few biological situations. For instance, one of the
dataset available in this discovery challenge gathers 27,679 gene expressions for 90
biological situations. As the algorithms extracting patterns run through a search
space growing exponentially according to the number of columns, the extraction
of the complete collection of patterns under various kinds of constraints remains a
challenge. Nevertheless, we claim that it is important to provide complete meth-
ods to capture all the information embedded in the data. Columns are often called
attributes and lines rows or objects.

Assume that the biologist is interested in all patterns of overexpressed genes
occurring in at least a given number of biological situations. To be able to an-
swer this query, it is necessary to tackle the common constraint of frequency (a
pattern is said frequent if it is supported by at least γ objects in the dataset, γ



being a given threshold). Even for this basic constraint, which furthermore satisfies
relevant properties (anti-monotonous with respect to (w.r.t.) the specialization re-
lation defined by the attributes [10]), classical algorithms based on a Apriori-like
approach fail [13].

However, in the particular case of the closed patterns, thanks to the join use of
the transposition of data and the properties of the Galois connections, it is possible
to mine all closed patterns and infer all frequent patterns in such large data [13]
(briefly speaking, a closed pattern is a maximal set of attributes (w.r.t. the set
inclusion) shared by a set of objects). This approach has been successfully applied
on gene expression data including SAGE data [14]. By using this technique, let
us note that the extracted patterns are object patterns and no longer attribute
patterns and it is necessary to define the transposed form of the constraint. Un-
fortunately, there is no straightforward generalization of this approach for a lot
of useful constraints. For instance, this approach cannot be used to extract free
(or key) patterns [3, 12] and δ-free patterns in large data. Furthermore, even if
the constraint of δ-freeness is efficiently pushed by the algorithms extracting the
so-called condensed representations of frequent patterns [4], δ-free patterns cannot
be extracted by these algorithms [13] in such data. In a recent work [8], by using
the associated objects (i.e., extension) to a pattern, we have proposed a method
to mine frequent and δ-free patterns from large data. The success of this approach
relies on the fact that the extension of a pattern has few objects in large datasets.

The δ-free patterns are of a great interest because their uses are highly inter-
esting. For instance, they enable to build rules with a bounded number of excep-
tions [3], non redundant rules [15] and it is known that their capacity to indicate
the minimal part of attributes highlighting a phenomenon is precious in classes
characterization and classification [1, 5]. There is an intense need of classes char-
acterization and classification techniques. For instance, in this discovery challenge,
the collected biological situations gather 59 cancerous samples and 31 normal and
the biologists would like to better understand the relationships between the genes
and the class (cancer versus normal) of the biological situations. In this paper,
we tackle the search of δ-strong characterization rules in large datasets. From a
technical point of view, we will see in Section 2 that δ-strong characterization rules
are inferred from δ-free patterns and their almost-closures (the almost-closure is
defined in Section 2.1).

The contribution of this paper is twofold. First, we propose a method to mine
all the δ-strong characterization rules in large datasets. Indeed, even if a method
to extract δ-free patterns is provided in [8], the almost-closures are not given. Due
to their huge size in large data, it seems to be a pitfall to try to build them. We
show how we get round this difficulty by focussing on the attributes describing
the class values. These attributes are the only attributes belonging to the almost-
closures which are required for mining δ-strong characterization rules. Second, we
provide several δ-strong characterization rules w.r.t. the class attribute (cancer
versus normal) of the datasets. Experiments tackle the large matrix (27,679 gene
expressions for 90 biological situations) available at this discovery challenge.

Section 2 presents the background (δ-strong characterization rules and mining
δ-free patterns in large datasets) which is required to understand the rest of this



paper. Section 3 describes our method to mine δ-strong characterization rules in
large datasets. Section 4 gives an overview of the used datasets. Finally, experi-
ments and results are describing in Section 5.

2 Characterization rules and mining δ-free patterns in

large datasets

2.1 Notations and δ-freeness

Let us specify the definitions and notations. Let r be the dataset. An attribute pat-
tern (resp. object pattern) is a set of attributes (resp. objects). The class attribute
is denoted by a. We say that an attribute pattern X is supported by an object
if this object contains X . X is γ-frequent if it is supported by at least γ objects
in r, γ being a given threshold. The frequency of X is denoted by F(X). Each
object is labelled by a class value in {c1, . . . , cn}. Table 1 provides an example
of dataset where 5 biological situations (i.e., objects) o1, . . . , o5 are described by
8 gene expressions (i.e., attributes) a1, . . . , a8. The class values are cancer and
no cancer (for instance, cancer = c1 and no cancer = c2). For example, the
attribute pattern a1a3a5 is supported by the objects o1 and o3 and thus a1a3a5 is
2-frequent.

gene expressions class: a

situations a1 a2 a3 a4 a5 a6 a7 a8 cancer no cancer

o1 1 0 1 0 1 0 1 0 1 0

o2 0 1 1 0 1 0 1 1 1 0

o3 1 0 1 0 1 0 0 1 1 0

o4 0 1 1 0 1 1 0 0 1 0

o5 1 0 0 1 0 1 0 1 0 1

o6 0 1 1 0 1 1 0 1 0 1

o7 1 0 1 0 0 1 0 1 0 1

Table 1. An example of gene expression dataset

Let us provide a formal definition of the δ-freeness. X is a δ-free pattern if there
is no association rule between two of its proper subsets with less than δ exceptions
(i.e., ∀Y ⊂ X, ∀Z ⊂ X , and Y ∪ Z = X and Y ∩ Z = ∅, there is no rule Y → Z
with F(Y Z) + δ ≥ F(Y )). An equivalent definition [4] is: X is a δ-free pattern if
for each Y ⊂ X, F(X) + δ < F(Y ). In Table 1, with δ = 1, a5a8 is 1-free since
F(a5a8) = 3 and one have F(a5a8) + δ = 4 < F(a5) = F(a8) = 5. Let us recall
that the confidence of the rule Y → Z is F(Y Z)/F(Y ). We specify the notion of
almost-closure which is needed for the rest of this paper: let δ be a positive integer,
the almost-closure of X is the set of attributes ai satisfying F(X) −F(Xai) ≤ δ.

2.2 δ-strong characterization rules

Let us have a look on the δ-strong characterization rules introduced in [5]. The key
idea is to mine all rules with a minimal body (i.e., the shortest premises). We argue



that this property of minimal body is a fundamental issue for characterization. Not
only it prevents from over-fitting (i.e. over-specified rules) but also it makes the
characterization easier to explain. To be used in practice, a reliable characterization
rule must have a rather high confidence (i.e., we say that the rule is strong [3]).
The following definition of δ-strong characterization rules ensures that such a rule
has a minimal body and a number of exceptions bounded by an integer δ (in other
words, the confidence of such a rule is greater than or equal to 1 − (δ/γ)).

Definition 1 (δ-strong characterization rules). Given a frequency threshold
γ and an integer δ, a rule X → ai is a δ-strong characterization rule if there is no
rule Y → ai with Y ⊂ X and a confidence greater than or equal to 1 − (δ/γ).

Given a frequency threshold γ, this definition means that we consider only
the minimum sets of attributes (i.e., the minimal bodies) to end up on ai, the
uncertainty being controlled by δ. The value of δ is fundamental to obtain relevant
rules. When δ = 0, every rule has a confidence value of 1 (i.e., exact rule). In
practical applications, especially in biology or medicine, we generally got few exact
rules due to the non-determinism of the phenomena and we have to relax the
condition on the value of δ to accept exceptions (the more δ raises, the more the
confidence decreases). For instance, in our running example (Table 1), with δ = 1
and γ = 2, a5 → cancer is a δ-strong characterization rule, but a5a8 → cancer is
not a δ-strong characterization rule.

Let us suppose now that the conclusion of a δ-strong characterization rule
is a class value (i.e., ci). We consider here the typical case where each object
is associated to a unique class value. Then, the δ-strong characterization rules
satisfy Property 1 which indicates that, under the assumption δ < γ (which is
very sensible in practice!), some classification conflicts are avoided. This property
is proved in [5] and it is precious to design classifiers [5]. This property will be also
useful in the following of this paper (Section 3) to prove Property 5 which leads
to a safe pruning criterion.

Property 1 (included bodies conflict) Given a frequency threshold γ, an in-
teger δ, X and Y two attribute patterns, Y ⊂ X, then the pair of δ-strong charac-
terization rules X → ci and Y → cj cannot exist.

Let us say few words on the mining of δ-strong characterization rules. From a
technical point of view, these rules come from the collection of δ-free patterns as
highlighted by Property 2.

Property 2 Given a frequency threshold γ, an integer δ and a δ-strong charac-
terization rule X → ai, then X is a δ-free pattern.

The proof of Property 2 is in [5] (its converse is false [5]). The usual method to
mine the δ-strong characterization rules requires the computation of all frequent δ-
free patterns and their almost-closures [5] to check if a class attribute belongs to the
almost-closure of X and does not belong to the almost-closures of the subsets of X .
For datasets with usual geometrical dimensions, this can be efficiently performed
thanks to a level-wise search [5]. Unfortunately, in large datasets, the computation



of the almost-closures is unfeasible and this motivated our work to mine δ-strong
characterization rules in large datasets. The next section addresses the mining of
δ-free patterns in large data.

2.3 Mining δ-free patterns in large datasets

As indicated in introduction, usual techniques fail to extract δ-free patterns in
large data. This is mainly due to the computation of the closures which contain a
lot of attributes or the large number of the candidates patterns and their storage
requires a large amount of memory. But, in large data, there are only few objects
which contain a set of attributes. Starting from this observation, we have recently
proposed [8] a method to mine frequent δ-free patterns in large datasets. The
key idea is to use the extension of a pattern to check these constraints, because
the extension has few objects which are easily handled in large databases. More
formally, the extension of an attribute pattern X , denoted by g(X), is the max-
imal set of objects containing X . Our approach relies on the following property
which underlines the relation between the frequency of an attribute pattern and
its extension:

Property 3 The frequency of an attribute pattern X is equal to the cardinal of
its extension |g(X)|.

It is clear that this property is well known but its use is interesting because it
enables to establish the frequency and the δ-freeness of any pattern only with its
extension.

Furthermore, we have shown an efficient property to compute the extension
of a pattern (i.e., let X and Y be two patterns, the extension of X ∪ Y is equal
to g(X) ∩ g(Y )) and a new safe pruning criterion based on the common use of
the minimal frequency and the δ-freeness properties. The simultaneous use of this
property and the pruning criterion is on the core of the FTminer (FT for Free
faT3) algorithm [8]. FTminer succeeds in mining large datasets like the ones
of this discovery challenge. Nevertheless, due to their huge size in large data,
FTminer does not compute the almost-closures of the δ-free patterns. We have
seen in Section 2.2 that the almost-closures are required to mine the δ-strong
characterization rules. The next section proposes a new approach to get round
this difficulty by focussing on the attributes describing the class values.

3 Mining characterization rules in large datasets

This section presents our approach to mine δ-strong characterization rules in large
data. As for mining δ-free patterns in large datasets, the key idea is to use the
extensions to check if an attribute belongs to an almost-closure. As the almost-
closures in large data are huge, we only compute this test for the attributes of the
class values. Furthermore, we give a new pruning criterion which speeds up the

3 The word “fat” is also used to refer to a large dataset as indicated by D. Hand during
his invited talk at PKDD’04.



extraction of δ-patterns which are on the basis of the δ-strong characterization
rules.

Property 4 shows that we can check if an attribute ai belongs to the almost-
closure of a pattern X thanks to the extensions of X and X ∪{ai}. The number of
exceptions (i.e., number of objects containing X and not ai) is also known, which
will be required to compute the confidence of the δ-strong characterization rules.

Property 4 Let X be an attribute pattern and δ a positive integer. An item ai

belongs to the almost-closure of X if and only if

|g(X)| − |g(X) ∩ g(ai)| ≤ δ

Moreover, the number of exceptions (number of objects containing X and not ai)
is equal to |g(X)| − |g(X) ∩ g(ai)|.

Proof. Property 3 indicates that the frequency of a pattern X is |g(X)|. As
F(X ∪ {ai}) is equal to |g(X) ∩ g(ai)| [8], the definition of the almost-closure
(see Section 2.1) is equivalent to |g(X)| − |g(X)∩ g(ai)| ≤ δ. Furthermore, by the
definition of the almost-closure, the number of exceptions is |g(X)|−|g(X)∩g(ai)|.

Let us provide an example. With γ = 2 and δ = 1, in our running example
(Table 1), a5a8 is 1-free (see Section 2.1). |g(a5a8)|−|g({a5a8}∪{c1})| = 3−2 = 1,
thus c1 belongs to the almost-closure of a5a8. As c1 does not belong to the almost-
closure of a5 nor a3, a5a8 → c1 is a 1-strong rule characterization of frequency 2
with one exception in r (i.e., its confidence is 2/3).

We give now the following important property:

Property 5 (pruning criterion) Let ci and cj be two class attributes, X and Y
two attribute patterns. If X → ci is a δ-strong characterization rule, then ∀ Y ⊃
X, Y → cj is not a δ-strong characterization rule.

Proof. Let X → ci be a δ-strong characterization rule, ci denotes a class attribute.
Assume that Y → cj with Y ⊃ X is a δ-strong characterization rule. This is
contradictory with Property 1.

Property 5 means that a level-wise algorithm can prune the search space from
X and it leads to a pruning criterion to mine δ-free patterns from which δ-strong
characterization rules are inferred.

We designed FTCminer (FTC for Free faT Characterization) algorithm. FTCminer

follows the outline of a level-wise algorithm. Its originality is that there is no gener-
ation phase of all the candidates at a given level since the candidates are generating
one at a time.

Given γ and δ, FTCminer mines the sound and complete collection of frequent
δ-strong characterization rules.
Proof (Correctness). By construction, the body of a rule r produced by FTCminer

is a frequent δ-free pattern X and the conclusion of r is a class attribute ci be-
longing to the almost-closure of X w.r.t. δ (i.e., F(X ∪ {ci}) − F(X) ≤ δ), thus
the confidence of r is greater than or equal to 1 − (δ/γ). Let Z be an attribute



pattern. The use of the pruning criterion (Property 5) ensures that there is no rule
Z → ci with Z ⊂ X , thus r satisfies Definition 1.

Proof (Completeness). FTCminer mines all the frequent δ-free patterns with an
almost-closure containing a class attribute. As the pruning criterion (Property 5)
is a safe pruning criterion (i.e. the pruned rules do not satisfy Definition 1),
FTCminer is complete.

4 SAGE dataset and data preparation

From http://lisp.vse.cz/challenge/CURRENT/, we downloaded the large gene
expression dataset which provides the level of expression of 27,679 genes in 90
biological situations. To be more precise, each attribute is a tag. The identification
of genes is closely related to the tags and biologists are able to associate the genes to
the corresponding tags. We did not use the small (74× 822) dataset also available
at this discovery challenge because biologists are more interested in knowledge
which may be extracted from a large set of genes. In the following of this paper,
we speak only of the large dataset.

The values of tags vary from 0 to 26021. The percentage of values of tags
different from 0 is 19.86% and the arithmetic mean is around 4. As already said,
the biological situations are divided into two classes: cancer and no cancer. 59
situations are labelled by cancer and 31 by no cancer (i.e., normal).

Gene expressions are quantitative values. Starting from such values, the prop-
erty of overexpression has to be encoded for each gene. For that, three discretized
datasets were kindly provided by the CGMC Laboratory. We briefly summarize
the methods of discretization (see [2] for more details). For each discretization, the
value 1 encodes overexpressed genes.

– Xmax method. For each tag, this consists of identifying the biological situ-
ations in which its value is in the 5% of the highest values. These values are
encoded 1, 0 otherwise.

– max-Xmax method. The threshold is fixed w.r.t. the maximal value (max)
observed for each tag. All the values which are greater than (100 − X%) of
max are assigned to 1, 0 for the others. Here, X = 25.

– mid-range method. The cut-off is fixed according to the highest (max) and
the lowest (min) values of each tag and their arithmetic mean is computed.
Then, for each tag, all the values greater than the arithmetic mean are set to
1, 0 otherwise.

Obviously, the discretization process preserves the dimensions of the dataset
and the label of each situation. Table 2 gives the main characteristics of the three
resulting datasets which are called Xmax, max-Xmax and mid-range. The density
is the number of 1 divided by the total size of the dataset (i.e. the number of
attributes times the number of objects) given as a percentage. For instance, the
density of Table 1 is 53.57% (thirty 1 divided by 56 = 8 × 7).



data Xmax max-Xmax mid-range

density (%) 4.49 2.01 3.64
overexpressed genes/row 1242.03 554.98 1008.12

Table 2. Main characteristics of the three discretized datasets

5 Results and discussion

In these experiments, we give the main features on the whole sets of δ- characteri-
zation rules and on the specific tags and rules which might be relevant in order to
characterize the biological situations according to cancer and no cancer. More
precisely, we discuss the interest of a particular rule. Obviously, we use FTCminer.

Overview of the whole sets of δ-characterization rules. Table 3 gives the number
of δ-characterization rules from Xmax, max-Xmax and mid-range according to the
parameters γ and δ. As expected, the number of rules increases when γ decreases
(and δ has a constant value). On the contrary, the number of rules decreases when
δ decreases (see for γ fixed to 5 or 10).

Note that when γ = 15 and δ = 3, we do not find rules in Xmax and max-Xmax.
Moreover, in this case, all extracted rules on mid-range conclude on cancer.
More generally, we got more rules on cancer than on no cancer. The imbalance
between the classes may explain this phenomenon (as there are only 31 situations
labelled by no cancer, γ = 15 means that a rule must appear in nearly 50% of
the situations).

γ 15 10 10 9
δ 3 3 2 2

rules cancer no cancer cancer no cancer cancer no cancer cancer no cancer

Xmax 0 0 8 0 2 0 12 0
max-Xmax 0 0 10 1 1 0 9 0
mid-range 45 0 638 8 369 1 777 3

γ 7 5 5 4
δ 2 2 1 1

rules cancer no cancer cancer no cancer cancer no cancer cancer no cancer

Xmax 278 29 4837 1322 2838 341 12602 2952
max-Xmax 89 4 761 135 489 31 1367 186
mid-range 3543 104 23872 4548 20622 996 80965 11676

Table 3. Number of rules according to the class value in Xmax, max-Xmax and mid-range

The number of rules varies according to the datasets (thus, the used discretiza-
tion method) and the largest number of rules is achieved with mid-range. With
γ = 7 and δ = 2, there are 13 (resp. 40) times more rules extracted from mid-range

than from Xmax (resp. max-Xmax). Surprisingly, mid-range has not the highest den-
sity (see Table 2), which ought to be an explanation. Currently, we have no sound
explanation of this record. Note that an identical phenomenon is reported in [2].
In the following, we focus on the rules extracted with (γ, δ) ∈ {(5, 2), (4, 1)}. This
leads to a relevant number of rules in each discretized dataset and for each class
value.



Comparison of sets of rules. In a certain sense, the rules belonging to several sets
of rules computed on the different datasets are independent of the encoding of the
overexpression. Let us have a look on such rules. For instance, with γ = 4 and
δ = 1, there are 1496 common rules between Xmax and max-Xmax, 768 between
max-Xmax and mid-range, 4398 rules between Xmax and mid-range and only a
single rule is shared by the three datasets. Table 4 is an excerpt of these rules. As
a common rule may have different frequency and confidence values with regard to
the dataset, this is expressed in Table 4 by the use of several lines for a unique
rule. This table gives the rule shared by the three datasets, which could be high
of interest, {8091 19351} → no cancer. This rule appears in situations 12, 16,
38 and 84.

common to max-Xmax and mid-range

Body Conclusion Exceptions Frequency Confidence Data
7259 14143 cancer 0 4 1 max-Xmax

1 6 0.83 mid-range

11695 17436 cancer 1 5 0.8 both
12719 19258 cancer 1 4 0.75 max-Xmax

1 7 0.86 mid-range

22218 26894 cancer 0 4 1 both
6756 26019 no cancer 1 4 0.75 max-Xmax

1 6 0.83 mid-range

13954 27489 no cancer 0 4 1 both

common to Xmax and mid-range

Body Conclusion Exceptions Frequency Confidence Data
566 11119 cancer 1 4 0.75 Xmax

1 5 0.8 mid-range

1525 9002 cancer 0 4 1 both
9739 27441 cancer 1 4 0.75 Xmax

1 5 0.8 mid-range

11119 21930 cancer 0 4 1 both
2467 20091 no cancer 1 4 0.75 both
20091 27139 no cancer 1 4 0.75 both

common to Xmax, max-Xmax and mid-range

Body Conclusion Exceptions Frequency Confidence Data
8091 19351 no cancer 1 4 0.75 all

Table 4. Characteristics of the common rules when γ = 4 and δ = 1.

Potential relevant rules. As said in introduction, biologists are interested in asso-
ciations on genes (e.g., synexpression groups), so we do not examine trivial rules
such as rules with only one tag in their body. Due to space limitation, we present
only a selection of rules with at least two tags in their body and a rather high
confidence and frequency (the latter point is to get associations conveying sound
relationships). Following these pragmatic selection criteria, with γ = 4 and δ = 1,
the rules coming from mid-range seem the more interesting and some of them are
presented in Table 5. Due to the lack of space, we provide the description of tags
(identification number, sequence and description) only for the tags which appear
the most frequently in our results (Table 6). Some tags are identified by several
genes: their identifications are separated by “;”.

Table 7 gives examples of selected rules with γ = 5 and δ = 2. The rules have
a higher frequency in mid-range than in Xmax and max-Xmax. In max-Xmax, the
confidence of the extracted rules is low.



mid-range

Body Conclusion Exceptions Frequency Confidence

11115 19811 cancer 1 13 0.92
5961 11115 cancer 0 12 1
8279 23600 cancer 1 12 0.92
10960 11115 cancer 1 12 0.92
11115 20766 cancer 1 12 0.92
4602 7259 18882 cancer 1 10 0.9
4602 7259 24686 cancer 1 10 0.9
8255 11115 19811 cancer 1 10 0.9
4602 7259 20461 cancer 1 9 0.89
4602 7259 25202 cancer 1 9 0.89
4602 18882 24686 cancer 1 9 0.89
4287 4602 7818 cancer 1 8 0.88
4287 4602 19811 cancer 1 8 0.88

4602 7259 19734 cancer 1 8 0.88
4602 24686 25202 cancer 1 8 0.88
4602 25128 25202 cancer 1 8 0.88
7259 12667 16807 cancer 1 8 0.88
8255 11115 13642 cancer 0 8 1
8255 11115 26846 cancer 1 8 0.88
8255 19811 26846 cancer 1 8 0.88
22619 25202 26846 27358 cancer 1 5 0.8

16786 26715 no cancer 1 7 0.86
22129 25356 no cancer 1 7 0.86
22129 27414 no cancer 1 7 0.86
22647 25356 no cancer 1 7 0.86
1722 25202 26715 no cancer 1 6 0.83

Table 5. Examples of potential relevant rules in mid-range with γ = 4 and δ = 1

Potential relevant tags. Few tags (e.g., 4602, 8255, 11115, 22129) clearly arise in
many rules concluding on cancer. They may have an influence on the development
of this disease. It is interesting to note that the frequencies of these tags strongly
varies from one class to another. For example, the tag 11115 appears 28.7 times
more in rules characterizing cancer than no cancer (with γ = 4 and δ = 1). The
tag 11115 is identified as GPX1. The expression of GPX1 has been found in various
studies to be correlated with cancerous situations [9, 11]. On the contrary, the tag
22129 appears 22 times more in rules concluding on no cancer than concluding
on cancer. It might mean that this tag is related to normal development.

A biologist’s point of view . The rule {4287 4602 19811} → cancer (in bold
font in Table 5) extracted from mid-rangewith γ = 4 and δ = 1 seems particularly
interesting. In 8 situations (20, 37, 45, 46, 48, 51, 53, 76), the association of the
three tags 4287, 4602 and 19811 leads to cancer. The confidence of the rule is 0.88.
These tags are described in Table 6. On these three tags, two of them are identified
as ribosomal proteins and one is identified as a transmembrane protein. The inter-
est of such a rule lies in its originality: NIFIE14 is a recently discovered protein.
The role of transmembrane proteins in cancer developpement is well studied: a
perturbation in the cellular communication mediated via transmembrane proteins
is often invoked as one major cause of cancers [7]. Moreover, ribosomal proteins
are more and more found linked with tumourous. For example, one recent study
has shown that the inhibition of the phosphorylation of the ribosomal protein S6
combined with other inhibitions was a possible way for treatment of cancerous



Number Sequence Description

4287 AGCTCTCCCT RPL17 CDNA sequence BC022357;
PIGK Phosphatidylinositol glycan, class K

4602 AGGCTACGGA Similar to ribosomal protein L13a, 60S
ribosomal protein L13a, 23 kD highly basic protein

8255 CATCCAAAAC HNRPH1 Heterogeneous nuclear ribonucleoprotein H1 (H)

11115 CTCTTCGAGA GPX1 Glutathione peroxidase 1

19811 GTTGCTGCCC NIFIE14 Seven transmembrane domain protein

22129 TCAGAGAATA SLC25A22 Solute carrier family 25
(mitochondrial carrier: glutamate), member 22;
IRS2 Insulin receptor substrate 2

25202 TGTGCTAAAT RPL34 Ribosomal protein L34;
USP36 Ubiquitin specific protease 36

Table 6. Characteristics of potential relevant tags

Xmax

Body Conclusion Exceptions Frequency Confidence
431 9002 cancer 1 5 0.8
6497 6544 cancer 1 5 0.8
18271 21701 no cancer 1 5 0.8

max-Xmax

Body Conclusion Exceptions Frequency Confidence
3401 27230 cancer 2 5 0.6
5371 19950 cancer 2 5 0.6

mid-range

Body Conclusion Exceptions Frequency Confidence
4602 24686 cancer 2 17 0.88
8255 11115 cancer 2 15 0.87
4602 7259 cancer 2 14 0.86
8255 19811 cancer 2 14 0.86
16306 16690 24686 cancer 2 9 0.78
7259 24686 25202 cancer 2 8 0.75
8083 8925 19811 no cancer 2 6 0.67

Table 7. Examples of potential relevant rules with γ = 5 and δ = 2

cells [6]. We also notice that the 8 situations supporting this rule are quite homo-
geneous: five of them concern prostate libraries. The three remaining situations
are divided in two situations dealing with pancreas library and one concerning
cerebral tumor.

6 Conclusion

In this paper, we have proposed a new method to extract all the δ-strong charac-
terization rules in large datasets. These geometrical dimensions are encountered in
a lot of domains such as gene expression data. We have performed this approach
in the large SAGE data set.

We have shown the potential impact of these rules to characterize cancer versus
no cancer biological situations. Several tags (e.g., 4602, 8255, 11115, 22129) might
be associated to cancer. The association of tags {4287 4602 19811} which concludes



on cancer seems promising. More investigations have to be done to validate the
interest of such rules.
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