Data Min Knowl Disc
DOI 10.1007/s10618-008-0111-4

Adequate condensed representations of patterns

Arnaud Soulet - Bruno Crémilleux

Received: 20 June 2008 / Accepted: 24 June 2008
Springer Science+Business Media, LLC 2008

Abstract Patterns are at the core of the discovery of a lot of knowledge from data
but their uses are limited due to their huge number and their mining cost. During
the last decade, many works addressed the concept of condensed representation w.r.t.
frequency queries. Such representations are several orders of magnitude smaller than
the size of the whole collections of patterns, and also enable us to regenerate the
frequency information of any pattern. In this paper, we propose a framework for
condensed representations w.r.t. a large set of new and various queries named con-
densable functions based on interestingness measures (e.g., frequency, lift, minimum).
Such condensed representations are achieved thanks to new closure operators auto-
matically derived from each condensable function to get adequate condensed repre-
sentations. We propose a generic algorithm MicMACc to efficiently mine the adequate
condensed representations. Experiments show both the conciseness of the adequate
condensed representations and the efficiency of our algorithm.
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1 Introduction

It is well-known that a current challenge in Knowledge Discovery in Databases (KDD)
is to cope with the “pattern flooding which follows data flooding” that is unfortunately
so typical in exploratory KDD processes. Indeed, a range of powerful techniques for
producing local patterns has been developed over the last decade (Morik etal. 2005),
but the overwhelming number of produced patterns hinders their uses. Such massive
output hampers the individual analysis performed by end-users of data whereas col-
lections of local patterns can capture subtle relationships in the data leading to the
discovery of precious nuggets of knowledge.

One solution to this problem relies on the condensed representation principle. The
idea is to compute a representation R of the produced patterns which is lossless: the
whole collection of patterns can be efficiently derived from R and R has to be as
concise as possible. This approach has been mainly developed in the context of the
frequency measure (Calders etal. 2004) and there are very few works addressing other
measures (Giacometti etal. 2002; Soulet etal. 2004). In real-world applications, we
claim that interestingness of patterns is evaluated by various user-defined measures
(e.g., frequency, confidence, lift, minimum). Combinations of such measures and con-
straints coming from these measures bring a rich quantitative information. This paper
extends the concept of pattern condensed representations to a broad spectrum of mea-
sures and constraints (see examples in Table 1) and enables us the efficient discovery of
various kinds of patterns (e.g., satisfying a utility-based function combining minimal
and maximal restrictions (Yao etal. 2004, see f¢).

Equivalence classes are at the core of the pattern condensed representations. They
have a nice property to summarize information: an equivalence class can be uniquely
and concisely represented by a closed pattern (Pasquier etal. 1999) or a set of genera-
tors (Boulicaut etal. 2003; Calders etal. 2004). There is a direct link between the gener-
ators and the closed patterns: any closed pattern is the closure of at least one generator of
its equivalence class. The closure operator is at the root of the definition of the equiva-
lence classes and thus the condensation. In Sect. 2.2, we will see that works in literature
use the Galois closure. It is appropriate to frequency based measures but unfortunately
not to other measures. In this paper, we bring a major improvement by proposing a

Table 1 Examples of

condensable functions (7, p, a Condensable function Category
are thresholds) f1: X — freq(X,D) Measure
fr X +— min(X.val) Measure
f3 X = (min(X.val), freq(X, D)) Measure/measure
fe X — freq(X,D) >y Constraint
f5 X +— freq(X,Dy)/freq(X,Dy) = p Constraint
fe X = ((min(X.val) + max(X.val))/2 > «,  Constraint/measure
freq(X, D))
fr X — freq(X,Dy)/freq(X, D) Measure
fg X — (freq(X,Dy1) x |D))/(freq(X, D) Measure
x|D1)
fo X — (max(X.val), freq(X, D)) Measure/measure
f10 X — freqv (X, D) Measure
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new closure operator which is adequate for a large set of various measures. This is the
key point which enables us to extend the principle of the condensed representations.
However, the user is generally also interested in the values of an evaluation measure
associated to patterns. For that reason, a condensed representation must allow to infer
not only the patterns, but also the values of an evaluation measure such as the frequency
without accessing the data. We will see that our approach provides such kind of infor-
mation for all handled measures. Finally, the success of condensed representations
also lies in the efficiency of their mining: it is faster to extract a condensed represen-
tation than the whole collection of patterns, especially in dense and/or correlated data
(Goethals and Zaki 2003). Experiments demonstrate the scalability of our approach
and that we are able to mine patterns under measures and constraints for which only
naive methods are available. More interestingly, these naive methods may fail in large
databases.

Condensed representations have a lot of applications and their use is not limited to
obtain frequent patterns more efficiently. First, they make interactive KDD processes
more easily: they have suitable properties to infer relevant patterns directly from the
condensed representations and they can be used as cache mechanisms. It is a way to
interact faster with queries than direct mining. Second, their properties are useful for
higher KDD tasks. For instance, the generators and closed patterns are used to produce
non-redundant (Zaki 2000a) or informative rules (Bastide etal. 2000). It is also possi-
ble to exploit condensed representations for classification (Crémilleux and Boulicaut
2002). Condensed representations are a key concept of inductive databases (Imielinski
and Mannila 1996): this paradigm is based on declarative queries instead of procedural
techniques and storing local patterns as intermediate results is then a major step.

Contributions. The main goal of this paper is to present a generic framework for
pattern condensed representations. We introduce the notion of condensable function
which is at the core of the definition of this framework. This latter covers a broad
spectrum of functions including measures and constraints having no suitable property
of monotonicity (see Sect.2.2). Condensed representations are achieved thanks to a
new closure operator which depends on a condensable function f and thus this opera-
tor automatically becomes adequate to f. Based on this closure operator, we propose
the MicMAc algorithm. It mines the condensed representations for any condensable
function, so-called adequate condensed representations. This algorithm is efficient
and the adequate condensed representations are concise.

The outline of this paper is as follows. Section?2 sketches basic definitions and
related work. In Sect. 3, we propose our generic framework for pattern condensed
representations according to any condensable function. Section4 defines the adequate
condensed representations and the MicMAc algorithm. Section5 provides in depth
experimental results.

2 Context and related work
2.1 Basic definitions

Let 7 be a set of distinct literals called ifems, an itemset (or pattern) is a non-null
subset of Z. The language of itemsets corresponds to £7 = 2Z\@. A transactional
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D
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Fig. 1 Example of a transactional context D

dataset is a multi-set of itemsets of L£7. Each itemset, usually called transaction, is a
database entry. For instance, Fig. 1 gives a transactional dataset D where 6 transactions
f, ..., are described by 6items A, ..., F.

Pattern mining aims at discovering information from all the patterns or a sub-
set of L7. More precisely, constraint-based mining task selects all the itemsets of
L7 present in D and satisfying a predicate which is named constraint. A constraint
expresses the interest of the user to focus on the most promising patterns accord-
ing to his point of view. Introduced in Agrawal and Srikant (1994), the minimal
frequency constraint provides the itemsets having a frequency exceeding a given min-
imal threshold y > 0: freq(X, D) > y. The (conjunctive) frequency of an itemset X,
denoted by freq (X, D), is the number of transactions in D containing X. Many works
(Ngetal. 1998) replace the frequency by other interestingness measures to evaluate the
relevance of itemsets. These measures are defined from different primitive functions.
For instance, the function freq. denotes the disjunctive frequency of an itemset (i.e.,
the number of transactions containing at least one item of X), and count the cardinal-
ity of X. From Fig. 1, freq(AC, D) = 2, frequ(AC,D) = 5 and count (AC) = 2.
Additional information (such as numeric values associated to items) can be used. Given
a function val : 7 — N, we extend it to an itemset X and note X.val the multiset
{val(i)|i € X}. This kind of function is used with the usual SQL-like primitives sum,
min and max. For instance, min(X.val) is the minimal val of each item of X. From
Fig. 1, min(AC.val) = 50.

2.2 Related work

In the literature, there are several families of condensed representations. Introduced
in Mannila and Toivonen (1997), the borders (or boundaries) are condensed repre-
sentations of (anti-)monotone constraints (this notion directly stems from the field of
concept-learning (Mitchell 1982) where boundaries sum up version spaces). These sets
of minimal or maximal itemsets w.r.t. a specialization relation are enough to determine
whether an itemset satisfies monotone and/or anti-monotone constraints. Borders are
concise representations but unfortunately, it is impossible to directly regenerate values
of interestingness measures for any itemset from only the borders. There are several
works on condensed representations for frequent itemsets which propose compact
representations adequate to the frequency function by introducing new kind of pat-
terns (e.g., disjunction-free sets (Bykowski and Rigotti 2003), Non-Derivable Itemsets
(Calders and Goethals 2002), k-free itemsets (Calders and Goethals 2003), itemsets
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with negation (Kryszkiewicz 2005)). Nevertheless, these condensed representations
mainly use the inclusion-exclusion principle (see Calders etal. (2004) for more details)
to regenerate the frequency of any itemset. As this technique requires a computation
from several itemset frequencies of the condensed representation, it may be time con-
suming. As the inclusion-exclusion principle is specific to the frequency, a strong
limitation of this approach is that it cannot be extended to other measures such as min,
sum, etc.

Many condensed representations rely on a closure operator (Birkhoff 1967) and
they are called closure-based condensed representations. They are related to lattice
theory (Birkhoff 1967). The most popular closure operator is very likely the Galois
closure: h(X) = {i € Z|freq(X U {i}, D) = freq(X,D)}. The function h defines
equivalence classes in L£7: two itemsets X and Y are in the same equivalence class iff
h(X) = h(Y), and one can straightforwardly prove that freq (X, D) = freq(Y, D).
The key idea of closure-based condensed representations is to select a representa-
tive for each equivalence class (closed patterns (Pasquier etal. 1999) or generators
(Boulicaut etal. 2003) also called free or key itemsets). There are a few extensions
of the closure-based condensed representations to measure other than the frequency.
In Soulet etal. (2004) and Li etal. (2007), it is shown that the previous condensed
representations are adequate to any frequency-based measure (e.g., lift, growth rate).
The essential patterns constitute a condensed representation adequate to the disjunc-
tive frequency (Casali etal. 2005). The closure operator / is adapted in Gasmi etal.
(2007) to deal with negative items (condensed representations include literal sets
such as AB where freq(AB, D) is the number of transactions containing A and
not B). We refer to the literature for more details (e.g., adding a border, comput-
ing several measures for each itemset) concerning the various existing condensed
representations.

2.3 Problem statement

To the best of our knowledge, all the proposed closure-based condensed representations
are dedicated to the frequency (conjunctive, disjunctive or negative) or frequency-
based measure. Other measures have received very little attention: only monotone
(i.e., monotonically decreasing or increasing) functions are addressed in Giacometti
etal. (2002). In this paper, we go further by proposing a generic framework for clo-
sure-based condensed representations which encompasses these measures and deals
with many others having no suitable properties such as monotonicity. We think that
generalizing closure-based condensed representations will offer many exciting new
tools for KDD (e.g., minimal rules w.r.t. min), similarly there are many uses stemming
from the frequency.

Obviously, the closure operator is at the core of the closure-based condensed
representations. The Galois closure is broadly the most often used in the literature.
The key idea of this paper is to use a closure operator adequate to a function f. In-
deed, a closure operator adequate to a function f] is generally not adequate to another
function f;. For instance, the Galois closure 2 which is adequate to the frequency
is inadequate for the function min. In Fig. 1, we can see that h(AC) = ABCD
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and freq(AC,D) = freq(h(AC),D) = freq(ABCD, D), but min(AC.val) #
min(ABC D.val) since min(AC.val) = 50 and min(ABC D.val) = 10). Given
a function f, the challenge is to find a closure operator iy such that f(X) =
f(hy(X)). A naive technique would consider the identity function id: X — X.
It is an adequate closure operator for any function f because id is a closure operator
and for all X, one has f(id(X)) = f(X). But, each itemset is its own representative
and thus the corresponding representation is not condensed at all. The next section
shows how to tackle this issue for a very large set of functions, the condensable
functions.

3 Framework of condensable functions
3.1 Definition of condensable functions

Itemsets condensation comes from dependencies between itemsets. We define the
notion of preserving function which reveals such a dependence between an itemset
and its specializations. This dependence will enable us the summarization achieved
by the condensed representations proposed in this paper.

Definition 1 (Preserving function) Let E be a set. A function p: L7 — E is preserv-
ing iff for each i € 7 and for each X C Y if p(X U {i}) = p(X) then p(Y U {i})
equals to p(Y).

A function p is a preserving function whenever the addition of an item i does not
modify p(X), then the addition of i does not modify the value of p for any special-
ization of X. Many functions are preserving: freq, freq., count, min, max, sum,
etc. For the purpose of illustration, we show that min is a preserving function. Let
X € L7 be an itemset and i € Z be an item such that min(X.val) = min(X U
{i}.val), i.val is then greater than or equal to min(X.val). Now, let Y © X, one has
min(Y.val) < min(X.val) because min decreases with X. As i.val > min(X.val),
we obtain i.val > min(Y.val) and conclude that min(Y U {i}.val) = min(Y.val).

The property of condensation expressed by the preserving functions still holds when
they are combined as condensable functions formally defined as follows:

Definition 2 (Condensable function) Let E be a set. A function f: L7 — E is con-
densable iff there exist a function F and k preserving functions py, ..., px such that

f=F(p1, ..., po.

Basically, a condensable function is a compound of preserving functions, there is
no restriction on F. We argue that the set of condensable functions is very broad and
general. Table 1 provides examples of condensable functions. First, according to the
nature of E, a condensable function is a constraint (if E = { false, true}: cf. f4 and
fs) or ameasure (if E C N: cf. f1, f2, f7, fs and f1o). Besides, several measures or
constraints can be jointly considered (e.g., f3, f6, f9). Second, the set of condensable
functions obviously includes all the preserving functions (e.g., f1, f2, f10), but it is
much larger and also contains many non-preserving functions. For instance, most of
interestingness measures are condensable (e.g., growth rate f5, confidence f7, lift fg)
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because these measures are combinations of the frequency which is preserving. As
our framework on condensed representations is based on the condensable functions
which are very various, it clearly encompasses the current approaches on closure-based
condensed representations dealing with condensable functions (e.g., freq (Pasquier
etal. 1999; Boulicaut etal. 2003), freq. (Casali etal. 2005), frequency-based mea-
sures (Soulet etal. 2004; Li etal. 2007)).

3.2 Adequate closure operators for condensable functions

This section shows how properties of condensable functions enable us to design a
proper closure operator adequate to a condensable function. This adequate closure
operator is at the heart of the conciseness of the condensed representation. Let X be
an itemset. Intuitively, a closure operator completes X with all the items which do not
affect f(X). For instance, with the conjunctive frequency, the closure of X gathers all
the items i such that freq(X U {i}, D) = freq(X, D). In the case of a condensable
function f = F(p1, ..., pr), we merely have to consider simultaneously the differ-
ent preserving function p ;. We formally define the adequate closure operator for any
condensable function as follows (Theorem 1 and Theorem2 below show that c1 f is
adequate to f and is a closure operator):

Definition 3 (Adequate closure operator) Let f = F(p1, ..., px) be a condensable
function, the closure operator adequate to f, denoted by c1 y, is defined as below:

clpX > {i € IIVj e (l,....k}, pj(XU{i}) = p;j(X)}

Definition3 says that an item i belongs to c1 y(X) iff each preserving function
pj remains constant with the addition of i. We illustrate Definition 3 with few exam-
ples. Of course, c1 freq( X"D)l exactly corresponds to the Galois closure operator &
(cf. Sect.2.2). We can also consider new condensable functions such as min. We
get Clyin(X.val)(X) = {i € Zlmin(X.val) = min(X U {i}.val)}. From Fig. 1, as an
example, one has c1,,;,(x.var) (BDE) = ABC D EF because the addition of any item
does not modify the value min(BDE.val).

Theorem 1 indicates that c1 ¢ is adequate to f:

Theorem 1 (Adequate property) Let f be a condensable function and X be an itemset,
one has f(X) = f(cly(X)).

Proof Let X € Lz andn > Osuchthatcl¢(X) = XU{iy,...,i,}.If n =0, one has
cly(X) = X and then f(X) = f(cly(X)). Assuming that for any n > 0, we have
S(X) = f(XU{iy,...,in}).Asipp1 € clp(X), wehave p;(XU{iy41}) = p;(X) for
eachj € {1, ..., k}(Definition3)and f (XU{i,+1}) = F(p1(XU{in+1}), ..., px(XU
{int1)) = F(p1(X), ..., pr(X)) = f(X).Moreover, XU{iy, ..., i,}isaspecializa-
tion of X and Definition 1 gives that p; (X U {i1,...,iy}) = p;(X U {i1, ..., ins1})
for each j € {1,...,k}. We straightforwardly obtain that f(X U {if,...,iy}) =

I To alleviate the notation, clf(X) refers to Can—>f(X)~
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FXU{i1, ..., int1D)- As f(X) equals f(X U{iy,...,i,}) by hypothesis, we obtain
that f(X) = f(X U {i1,...,in+1}). By induction, we conclude that Theorem 1 is
correct. O

This theorem ensures us that cly is adequate to the function f. It is also
crucial for proving Theorem2 and justifying the adequacy of the condensed repre-
sentations of our generic framework. The following example illustrates the practical
impact of the link between f and cly. From Fig. 1, we have min(BDE.val) =
min(clyin(BDE).val) = min(ABCDEF.val) = 10. However, we note that
ABCDEF is not present in D. More generally, c1,,;, is not adequate to the fre-
quency (i.e., freq(X, D) # freq(cluin(X),D)). We can jointly consider the func-
tions min and freq for handling this phenomenon (this is formulated by the function
f3 in Table 1). Then, for the itemset BDE, we obtain that c1 ,(BDE) = ABCDE.
We still have min(BDE .val) = min(ABCDE.val) = 10, but freq(BDE, D) =
freq(ABCDE,D) = 1.

Given a condensable function f, we now prove that c1 f is a closure operator:

Theorem 2 (Closure operator) Let f be a condensable function, cly is a closure
operator.

Proof Extensive: Let X € L7 and i € X. As we have p;(X U {i}) = p;(X) for each
Jjell,... k},wehavei € cly(X).Idempotent:LetX € Lrandi € cl(clf(X)).
One has p(cls(X)U{i}) = pj(cly(X))foreach j € {1, ..., k} (see Definition 3).
As pj(cly(X)) = p;(X) (see the proof of Theorem 1), we straightforwardly deduce
that p;(X U {i}) = p;(cly(X) U {i}) by a similar induction done in the proof of
Theorem 1. Monotonically increasing: Let X € Y and i € 7 such thati € c1/(X).
First, we have p;(X U {i}) = p;(X) foreach j € {1, ..., k} (Definition 3). As each
function p; is preserving (Definition 1), we obtain that p; (Y U {i}) = p;(Y) because
Y is a specialization of X. Thus, the item i belongs to c1 ¢ (Y). O

The proof of this theorem clearly highlights the great role of Definition 1. The
property given by the definition of preserving functions ensures that c1 y monoton-
ically increases and then provides a closure operator. Theorem2 enables us to use
well-known properties on equivalence classes designed by a closure operator in order
to define and mine condensed representations adequate to condensable functions as
we will see in the next section.

4 Mining adequate condensed representations
4.1 Definition of adequate condensed representations

This section defines condensed representations adequate to condensable functions,
so-called adequate condensed representations. The principle is similar to the one
performed by the usual closure-based condensed representations, except that the ade-
quate closure operator c1 ¢ is used (i.e., given a condensable function f, an itemset
X is in the same equivalence class as an itemset Y iff c17(X) = cl(Y)). All the
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itemsets belonging to the same equivalence class have the same value for f (The-
orem 1). As for usual closure-based condensed representations, we have to select at
least one itemset in each equivalence class, typically the free itemsets (i.e., generators)
or closed itemsets (cf. Sect.2.2). We then extend the usual definitions of the free and
closed itemsets stemmed from /4 to the adequate closure operator:

Definition 4 (Adequate free and closed itemsets) Let f = F(py, ..., px) be a con-
densable function, an itemset X is a free (resp. closed) itemset adequate to f iff for
each Y C X (resp. X C Y),onehas cl7(Y) # cly(X).

In other words, an adequate free/closed itemset is an itemset having its neighbors
(immediate generalizations/specializations) with a different value for at least one pre-
serving function p;. Thus, we can straightforwardly deduce that an itemset X is an
adequate closed itemset iff c1 7(X) = X: an adequate closed itemset is the maxi-
mal element of its equivalence class. For instance, ABC DE is not a closed itemset
adequate to min (because cl,,ij,(ABCDE)=ABCDEF)and then, ABCDEF is a
closed itemset adequate to min. On the contrary, an adequate free itemset is a min-
imal element of its equivalence class. For example, BD is a free itemset adequate
to f3 because there is no smaller itemset (B or D) having simultaneously the same
frequency and the same value for min.

Following on, we focus on the condensed representations based on adequate closed
itemsets (note that our algorithm proposed in next section also extracts all the ade-
quate free itemsets). We exploit a property of the closure operator for a selector, i.e.
a function s: L7 — R (which maps any itemset X € L7 to its representative s(X) in
the condensed representation R). An adequate condensed representation gathers all
the adequate closed itemsets:

Theorem 3 (Adequate condensed representation) Let f be a condensable function,
the set of all the closed itemsets adequate to f, denoted by RCy, is a condensed
representation adequate to f. The function scy : X +— minc{Y € RCy|X CY}isa
selector of this representation:

VX € Lz, scp(X) € RCrand f(X) = f(scr(X))

Proof Let f be a condensable function. We have RC; = {X € Lz|VY D X,
clyp(Y) # clyp(X)}. Let X be an itemset and ¥ = scy(X). First, one has X C
c1y(X) because cl is idempotent. Second, by definition of scy, we have X C Y
and then, c1 s(X) € c1;(Y) because c1 y monotonically increases. By definition of
RC ¢, Y isanadequate closed itemset: ¥ = c1 ¢(Y). Thereby,onehas X C c17(X) C
Y. As cly(X) is a closed itemset adequate to f, c17(X) belongs to RC r. We de-
duce that ¥ = c1¢(X) because Y is the minimal closed superset of X. Finally, we
obtain that sc s (X) = c17(X) and Theorem1 gives f(X) = f(cly(X)). Thus, we
conclude that RC y with the selector sc s is a condensed representation adequate to f.

O

This theorem is significant because it ensures to get a condensed representation.
We will see in the experiments that the sizes of adequate condensed representations
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Table 2 RC f;: adequate closed itemsets and their f3 values

X € RCyy f(X) X e RCyy f(X) X e RCyy f3(X) X e RCyy [3(X)

A (50, 4) F (15,2) CF (15, 1) ABCD (10, 2)
C (75, 3) AB (30, 3) DE (10, 2) ABCE (30, 1)
D (10, 3) AC (50,2) ABC (30,2) ABEF (15, 1)
E (30, 4) AE (30, 3) ABE (30, 2) ABCDE (10, 1)

are smaller (and, in general, much smaller) than the whole collection of itemsets. On
our pedagogical (and small) example, the condensed representation based on closed
itemsets adequate to f3 (i.e., according to min and freq) coming from the data in
Fig. 1 is the set RC(uin, freq) = RC p; given in Table 2.

These 16 adequate closed itemsets summarize both the frequency and the min value
of the 40 itemsets present in the dataset D. Moreover, the selector sc(X) returns
the minimal closed itemset adequate to f and including X. This selector is impor-
tant because it does not require to get back to the dataset. For instance, sc r,(BDE)
directly returns its representative ABC D E which also corresponds to c1 ¢, (BDE) in
the dataset D.

4.2 MicMAc: an algorithm to mine adequate condensed representations

MicMac (MIning Apequate Condensed representations) is a levelwise algorithm
which produces the condensed representation adequate to a condensable function.
More precisely, given a dataset D and a condensable function f, MiCMAC returns
all the adequate free itemsets, each adequate free itemset X being associated with its
adequate closed itemset c1 ¢ (X) and its value f(X).

Before detailing the algorithm, we give a property speeding up the mining of ade-
quate condensed representations. Indeed, Property 1 shows that the freeness adequate
to f is an anti-monotone constraint and thus MicMAcC can benefit from the monoto-
nicity property to prune the search space, since MicMAc follows the framework of
the levelwise algorithms.?

Property 1 (Anti-monotonicity of adequate freeness) Let f be a condensable func-
tion, the freeness adequate to f is an anti-monotone constraint.

Proof Let f be a condensable function. Let X € L7 be a non-free itemset w.r.t. f.
Let Y be specialization of X (i.e., ¥ 2 X). There exists Z C X such that c1¢(Z) =
c1ly(X) because X is not free. One has c1 r(ZU (Y\X)) = cly(cl (Z2) U (X \X))
(idempotent and monotonically increasing propertiesof c1 7). Ascl s (Z) = c1 s (X),
we obtain that c1s(cly(Z) U (Y\X)) = cly(clys(X) U (¥Y\X)). Idempotent and
monotonically increasing properties of c1 ¢ gives c1 y(c1 f(X)U(Y\X)) = cl (XU

2 Let us recall that a constraint ¢ is anti-monotone iff whenever X satisfies ¢, any generalization of X (i.e.,
Y C X) also satisfies ¢. Such constraints provide powerful pruning conditions in the search space (Mannila
and Toivonen 1997).
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Algorithm 1 MicMAc

Input: A condensable function f, an anti-monotone constraint g 4 37 and a dataset D

Output: All the free itemsets adequate to f and satisfying g4 s with their closure adequate to f and f
values

: Candy =1

i=1

: while Cand; # ¢ do
Freej :=={X € L7 | X € Cand; and X is a free itemset adequate to f and satisfies g4 7}
Candiy) :={X € L7 |VY C X, onehas Y € |J;; Free;}\ U;<; Cand,
i=i+1

od

s return {(X, c17(X), f(X)) | X € Uj<i Freej)

A A ot

(Y\X)) = cly(Y). Thus, Y is not a free itemset adequate to f and we conclude that
Property 1 is correct. O

In other words, whenever X is a free itemset adequate to f, all the subsets of X are
also free itemsets adequate to f. As an example, let us consider f3. Since the item-
set ABD is not free adequate to f3 (because min(BD.val) = min(ABD.val) and
freq(BD, D) = freq(ABD, D)), we are sure that ABDC, ABDE and ABDCE
are not free. Experiments show that Property 1 really improves the mining of adequate
condensed representations.

MicMac algorithm (see Algorithm 1) is clearly inspired from CLOSE (Pasquier
etal. 1999) and MINEX (Boulicaut etal. 2003). It demonstrates that closed itemsets
mining algorithms can be easily adapted to the new closure operator c1 . As already
said, MIcMACc is a levelwise algorithm (Mannila and Toivonen 1997) benefiting from
the anti-monotone property of the adequate freeness (Property 1). In addition, the
user can specify another anti-monotone constraint g4 s (e.g., the minimal frequency
constraint) which is often useful in real-world applications.

Now we briefly detail this generate-and-test algorithm where the sets Cand, (resp.
Free;) contain all the candidates (resp. adequate free itemsets) of cardinality i. Line 1
initializes the candidates of length 1 (i.e., items). While there are candidates of length
i, Line4 computes all the adequate free itemsets of length i satisfying the constraint
gaym (test step). Line 5 generates the new candidates of length i + 1 (generate step).
Finally, Line 8 returns the complete collection of the adequate free itemsets (with the
corresponding adequate closed itemsets and values for f).

The following theorem proves the soundness and the correctness of MiCMAC:

Theorem 4 MicMAc algorithm is sound and correct.

Proof The conjunction of two anti-monotone constraints (i.e., adequate freeness and
qApm) being again anti-monotone, levelwise algorithm (Mannila and Toivonen 1997)
guarantees that all the free itemsets adequate to f and satisfying g4 are extracted.
As the algorithm also returns the adequate closure of all the free itemsets and their
value f, MicMac is sound and correct. O
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5 Experimental study

The aim of our experiments is to quantify the benefit brought by the adequate con-
densed representations both on conciseness and run-time. For this purpose, we con-
ducted experiments on benchmarks coming from the UCI repository> with various
condensable functions. All the tests were performed on a 3 GHz Xeon processor
with Linux operating system and 1GB of RAM memory. The used prototype is an
implementation of MicMAc.

We consider all the condensable functions listed in Table 1 except for f> and fo.
Note that some condensable functions lead to identical results (same size and extraction
run-time). Indeed, two condensable functions with the same set of preserving functions
have the same adequate closure operator (i.e., (F1(p1, ..., px) and F>(p1, ..., pk))
= (clrpy,..p) = C1E(p1,...p))- SO we gather results on functions f1, fa, fs5, f7
and fg because these functions are defined from the same set of preserving functions
(here, freq).

In the following, condensable functions using numeric values were applied on attri-
bute values (noted val in the definitions of functions) randomly generated within the
range [1,100]. Experiments were carried out on 21 benchmarks (given in Table 3)
having various dimensions and density.

5.1 Conciseness of the adequate condensed representations

This section shows the conciseness of the adequate condensed representations with
regard to the whole collection of itemsets. First, we compare the number of adequate
closed itemsets (i.e., the number of itemsets of the adequate condensed representation)
to the number of itemsets present at least once in the dataset (i.e., freq(X, D) > 1).
It means that we need to know the number of the whole collection of itemsets and we
use EcLAT (Zaki 2000b) for this purpose. We chose the prototype implemented by
Borgelt and available on FIMI repository* because it is renowned for its effectiveness
(Goethals and Zaki 2003). Nevertheless, the total numbers of itemsets on mushroom
and sick remain unknown because the extractions performed by EcLAT failed.
Results are given in Table 3.

Obviously, the number of itemsets of an adequate condensed representation is
always lower than the total number of itemsets. More interestingly, the adequate con-
densed representation are several orders of magnitude smaller than the total number
of itemsets (103 for horse, more than 102 for german, hepatic,vehicle,etc.).
Thus adequate condensed representation are concise. The most important gains of
compression are obtained on the largest collections of itemsets. Another result is that
the compression gain is approximatively the same for all the condensable functions,
including condensable functions only based on the frequency as preserving function
and therefore using the Galois closure as adequate closure operator. It means that,
on the one hand, the benefit of the adequate condensed representations is similar to

3 www.ics.uci.edu/~mlearn/MLRepository.html.

4 http://fimi.cs.helsinki.fi/data/.
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Mushroom : adequate condensed representations Mushroom : adequate condensed representations
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Fig. 2 Conciseness of adequate condensed representations (left) and run-time comparison between
MicMAc and EcLAT (right) on mushroom according to y

the one induced by the usual condensed representation of closed itemsets and, on
the other hand, the adequate closure operators are suitable for all the condensable
functions.

Let us have a look on the size of the adequate condensed representations according
to the minimal frequency threshold y. Figure 2 (left) plots the size of the adequate
condensed representations on mushroom according to y. Of course, the size of the
adequate condensed representation increases when y decreases because there are more
frequent itemsets. But, the number of adequate closed itemsets increases more slowly
than the number of itemsets (see the upper curve in Fig. 2: on mushroom, the com-
pression gain is around 100 for the high values of y whereas it reaches 1000 for the
low values). The control of the increasing of the number of itemsets may be precious
for searching rare itemsets.

5.2 Efficiency of MicMAc

This section aims at measuring the run-time benefit brought by the adequate condensed
representations w.r.t. ECLAT. Keep in mind that ECLAT mines all the itemsets present
in the data and thereby its run-time is the same for all the condensable functions. A
post-processing step is required to compute the values of the condensable functions
on each pattern. The run-time of this step is low and it is not reported in our results. On
the contrary, MicMac directly provides the values of the condensable functions on
patterns and, obviously, produces only the patterns of the condensed representations
(as said below, it also enables us in a straightforward way the uses of the condensed
representations).

Run-times are displayed in Table 3. Best run-times are written in bold. ECLAT failed
twice due to a lack of memory whereas MicMAc succeeded. First, MicMAcC run-
times for mining the different adequate condensed representations were quite similar.
Most of the time, MicMAcC is simultaneously better (or worst) than ECLAT for all the
condensable functions. Second, the global behavior of MicMAc is very good: Mic-
MaAc achieves the best running times on 10 datasets, ECLAT on 7 datasets and results
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are mixed on 4 datasets. It is very important to recall that the approach performed by
MicMAc is generic whereas ECLAT only extracts frequent patterns. With MicMAc,
the user can address a broad set of condensable functions (even complex ones such
as fe and not only measures based on (anti-)monotone properties). MICMAC is able
to mine adequate condensed representations in datasets which are intractable for this
task with other techniques (e.g., mushroom, sick).

With regard to the role of the minimal frequency threshold y, Fig. 2 (right) plots
MicMAc and ECLAT run-times on mushroom according to y. As expected, run-
times increase when y decreases because there are more frequent itemsets. More
interestingly, these curves indicate that the higher compression gain, the more effi-
cient MicMac w.r.t. ECLAT is (we have seen in the previous section that the com-
pression gain increases when y decreases). When the adequate condensed represen-
tations are very concise, Property 1 drastically reduces the search space and thus im-
proves the extraction. For this reason, MiICMAC appears to be very efficient with
low frequency threshold on mushroom. This phenomenon (i.e., the effectiveness
of the condensed representation approach increases according to the decreasing of
y) is also reported by the usual closed pattern mining methods (Goethals and Zaki
2003).

6 Conclusion

By proposing the new notion of adequate condensed representation, this paper
extends the paradigm of condensed representations to a broad spectrum of functions
including interestingness measures and constraints. This framework encompasses the
current methods since existing closure-based condensed representations (e.g., dis-
junctive/conjunctive frequency, lift) correspond to specific closure operators of our
framework. Experiments show that sizes of the adequate condensed representations
are smaller (and, in general, much smaller) than the total number of itemsets. Besides,
MicMac efficiently mines such condensed representations even in difficult datasets
which are intractable for this task with other techniques.

We think that adequate condensed representations open a new research direction on
discovering both various and significant patterns which may lead to promising appli-
cations. We particularly intend to exploit the powerful semantic of the adequate closure
operators to mix the notions of utility-based functions and non-redundant association
rules. For instance, in the context of market basket analysis, we can consider the rule
X — Y with a minimal body X with low prices attached to X (i.e., X is a free itemset
adequate tomax (X.price) < y;)and amaximal head Y with high prices (i.e., XUY is
aclosed itemset adequate to min((X UY).price) > y»), then such a rule may indicate
that the purchase of cheap products leads to the purchase of expensive products. More
generally, this direction suggests many exciting new applications for KDD similarly
there are many uses stemming from the condensed representations based on frequency.
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