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Abstract. Mining patterns under constraints in large data (also called
fat data) is an important task to benefit from the multiple uses of
the patterns embedded in these data sets. It is a difficult task due to
the exponential growth of the search space according to the number
of attributes. From such contexts, closed patterns can be extracted by
using the properties of the Galois connections. But, from the best of
our knowledge, there is no approach to extract interesting patterns like
δ-free patterns which are on the core of a lot of relevant rules. In this
paper, we propose a new method based on an efficient way to compute
the extension of a pattern and a pruning criterion to mine frequent
δ-free patterns in large databases. We give an algorithm (FTminer) for
the practical use of this method. We show the efficiency of this approach
by means of experiments on benchmarks and on gene expression data.

Keywords: Large databases, δ-free patterns, extensions, rules, con-
densed representations.

1 Introduction

Large data are data sets characterized by a large number of columns (i.e., at-
tributes) and few rows (i.e., transactions). Data mining algorithms extracting
patterns have difficulty in running on this kind of data because the search
space grows exponentially according to the number of rows and it becomes huge.
Known algorithms such as Apriori [1] or the recent algorithms that compute
the so-called condensed representations can fail in mining frequent or constrained
patterns in large data [17]. This is an important challenge because these geomet-
rical dimensions are often encountered in a lot of domains (e.g., bioinformatics,
quality control, text mining). For instance, in gene expression data, the matrices
to explore gather the expression of tens of thousands of genes in few biological
situations (we will see in Section 5 an example of such a matrix with 27,679 gene
expressions and 90 biological situations). In quality control, the number of steps
and parameters during the mass production is very numerous.

Extracting the complete collection of patterns under various kind of con-
straints in such data is a promising direction research . The completeness means
that every pattern which satisfies the defined constraints has to be returned
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(e.g., every frequent pattern, every closed pattern). This is important to capture
all the information embedded in the data. For instance, in biological data, fre-
quent patterns are on the basis of synexpression groups (i.e., co-regulated sets
of genes assumed to take part in a common function within the cell). Thanks to
the properties of Galois connections and the transposition of data, a technique
has been proposed in the particular case of closed patterns [17]. Unfortunately,
we will see Section 2.2 that this approach of transposition is impracticable with
the δ-free patterns.

In this paper, we focus on the search of free (or key) patterns [4, 14] and
δ-free patterns [6]. The latter are a generalization of free patterns. Let us re-
call that free patterns are made of attributes without relations among them.
They reveal the sound relationships between the data. With regard to the con-
straint of frequency, they are the minimal patterns of the classes of equivalence.
As the property of freeness (and δ-freeness) is anti-monotonous, free and δ-free
patterns can be efficiently extracted even in correlated data [6]. These patterns
make an efficient condensed representation of all frequent patterns and their uses
are highly interesting. They enable to build rules with a bounded number of ex-
ceptions [5], non redundant rules [18], their capacity to indicate the minimal
part of attributes highlighting a phenomenon is precious in classes character-
ization and classification [3, 7]. δ-free patterns combine the exhaustiveness of
the relations within the database and the simplicity which is required to build
rules (and especially classification rules) without over-fitting. There is a need of
classes characterization and classification techniques in large data, for instance,
to predict a cancer diagnosis according to individual gene expression profiles or,
in the area of the quality control, to detect an equipment which is badly tuned
in a silicon plate production chain.

We propose in this paper a method to mine frequent and δ-free patterns
from large data without transposing the data set. The key idea is to use the
extension of a pattern to check these constraints, because the extension has few
objects in large databases. We show a new property to compute the extension of a
pattern and a new pruning criterion. Their simultaneous use is on the core of the
FTminer algorithm that we propose to extract the frequent and δ-free patterns
from data. Then we show the efficiency of FTminer by means of experiments
on several benchmarks and a gene expression database.

The organization of this paper is as follows. In Section 2, we recall useful
definitions and we discuss related work on δ-free patterns mining. Section 3
presents our approach and new properties on extensions and pruning. The algo-
rithm FTminer is given in Section 4. We end this paper by some experimental
results in Section 5.

2 Context and Definitions

2.1 Notations and Definitions

Basic notations. Let us recall some definitions and notations useful for the rest of
this paper. We define a database r as a relation R between the set A of attributes
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(or items) and the set O of objects (or transactions): for a ∈ A, o ∈ O, aRo if and
only if the object o contains the attribute a. r can also be viewed as a boolean
matrix. In this case, we say that aRo if and only if (a, o) = 1 in the matrix.
Notice that o ∈ O is also a set of attributes. An attribute pattern or itemset
is a subset of A. Similarly, an object pattern is a subset of O. We say that an
attribute pattern X is supported by an object o if o contains X . A specialization
relation is defined on the attributes patterns (resp. objects patterns): a pattern
X1 is more specific than X2 if X2 is a subset of X1. Thanks to this relation,
the attribute patterns can be represented in a lattice. We give an example of
transactional database in Table 1.

Table 1. An example of transactional database

a1 a2 a3 a4 a5 a6 a7 a8

o1 1 0 1 0 1 0 1 0
o2 0 1 1 0 1 0 1 0
o3 1 0 1 0 1 0 0 1
o4 1 0 0 1 0 1 0 1
o5 0 1 1 0 0 1 0 1

γ-frequency and δ-freeness. An attribute pattern X is γ-frequent if it is sup-
ported by at least γ objects in r, γ being a given threshold. In Table 1, the
frequency (noted F) of the attribute pattern a3a5 is 3 (i.e., F(a3a5) = 3) and
a3a5 is said 3-frequent. X is a δ-free pattern if there is no association rule be-
tween two of its proper subsets with less than δ exceptions (i.e., there is no rule
X1 ⇒ X2 with F(X1 ∪ X2) + δ ≥ F(X1) and X1 ∪ X2 = X and X1 ∩ X2 = ∅).
To facilitate the understanding of the next sections, we will use the follow-
ing equivalent definition of the δ-freeness [6]: X is a δ-free pattern if for each
X1 ⊂ X, F(X) + δ < F(X1). In Table 1, a5a8 is 1-free since F(a5a8) = 1 and
one have F(a5) = F(a8) = 3 > F(a5a8) + δ. When δ = 0, X is called a 0-free
set or a free set.

Extension and Intension. We recall the definition of the extension of an attribute
pattern. Let X be an attribute pattern, O an object pattern. The extension
g(X) is the maximal set of the objects containing X . The intension f(O) is the
maximal set of attributes appearing in every object of O. h = f ◦g and h′ = g◦f
are the closure operators of the Galois connection. An attribute (resp. object)
pattern X (resp. O) is closed if h(X) = X (resp. h′(O) = O).

2.2 Related Work

The minimal frequency constraint is the most usual constraint in data mining. It
is on the core of well-known algorithms like Apriori [2] which extracts all the γ-
frequent patterns by scanning the database at each level. This levelwise algorithm
is generalized to anti-monotonous constraints according to the specialization of



Mining Frequent δ-Free Patterns in Large Databases 127

attributes [12]. If this technique is efficient in sparse data, it fails in correlated
data [5]. By computing the frequency of only a few patterns (the minimal and the
maximal patterns of the classes of equivalence), condensed representations based
on free (or key) patterns [4, 14] and on closed patterns [5, 13, 15, 19] improve this
approach on correlated data. These condensed representations are called exact
because the exact frequency of each pattern can be inferred. If a bounded number
of errors on the frequency of patterns is accepted, the condensed representation
of δ-free patterns is more concise and can be mined more efficiently. Let us note
that the δ-freeness is an anti-monotonous constraint and the higher δ, the more
the efficiency of the pruning increases. It is important to be able to extract these
patterns because they enable multiple uses on data mining techniques [3, 11, 18]
(e.g., rules with minimal body, characterization of classes, classification).

Unfortunately, if the number of attributes is very large (i.e., large data), even
the algorithms on condensed representations based on closed and δ-free patterns
fail (except if the frequency threshold is very high, which is not sensible in real
applications). In the specific case of the closed patterns, a technique relying
on the properties of Galois connections and the transposition of data has been
proposed [17]. Unfortunately, there is no straightforward generalization of this
approach for a lot of constraints. By using this technique, the extracted pat-
terns are object patterns and no longer attribute patterns and it is necessary
to define the transposed form of the constraint. It is easy for closed patterns
(thanks to the Galois connections), but not for a lot of constraints and espe-
cially for the δ-freeness [10]. In this case, each equivalence class contains at least
one constrained pattern and one has to consider each attribute pattern of the
lattice [10].

Notice that another method to extract free patterns is presented in [16]. It
uses generalized properties on antimatroid spaces. An antimatroid space corre-
sponds to the particular case of a lattice where each equivalence class of frequency
contains one unique minimal generator. It is unlikely that happens in real data
sets but this method has been extended to spaces that are not antimatroids in [9].
In this last case, the free patterns can be extracted from the closed ones by us-
ing minimal transversals of hypergraphs, but the complexity of the technique
remains an open issue [8] and this approach cannot be used in practice.

3 Computing Frequency and δ-freeness in Large Data

This section presents our approach to mine frequent δ-free patterns in large data.
We start by giving the main ideas, then we specify the technical key points: the
link between extensions and the minimal frequency and δ-freeness constraints,
our technique to compute the extensions and a new criterion based on the con-
junction of the minimal frequency and δ-freeness constraints.

3.1 Main Ideas of Our Approach

The computation of the closures of patterns is often a bottleneck for algo-
rithms mining frequent and δ-free patterns. Unfortunately, in the case of large
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databases, the closures contain a lot of attributes and their storage requires a
large amount of memory. That is why this approach often fails. But, with large
data, there are only few objects which satisfy a set of attributes. Our idea is to
check the δ-freeness constraint by using the corresponding patterns of objects:
the extensions gather small object patterns easier to store.

Let us note that γ-frequency and δ-freeness are anti-monotonous constraints.
We benefit from the pruning properties coming from such constraints. Moreover,
we define and exploit a new pruning criterion stemmed from the conjunction of
the γ-frequency and δ-freeness. This criterion is checked by using the extensions
of patterns. Finally, we think that the success of this approach lies on the com-
bination of these two points: mining γ-frequent and δ-free patterns by using the
extensions and the use of this new pruning criterion.

3.2 Extension as a Frequency

Property 1 indicates the relation between the extension and the frequency of an
attribute pattern.

Property 1. The frequency of an attribute pattern X is equal to the cardinal of
its extension |g(X)|.

It is clear that Property 1 is well known but its use is interesting because
it enables to rewrite the definitions of the minimal frequency and δ-freeness
constraints with extension:

Definition 1. An attribute pattern X is γ-frequent if |g(X)| ≥ γ.

Definition 2. An attribute pattern X is δ-free if for all X1 ⊂ X,
|g(X)| + δ < |g(X1)|.

In the example in Table 1, the extension of the attribute pattern a1a3 is equal
to o1o3 and its frequency is 2 as indicated by Property 1. a1a3 is 2-frequent. To
illustrate Definition 2, let us have a look at the patterns a1a3 and a1a4. a1a3 is
0-free because |g(a1)| = 3 > |g(a1a3)| + δ = 2 and |g(a3)| = 4 > |g(a1a3)| + δ.
Nevertheless, a1a4 is not 0-free since |g(a4)| = 1 = |g(a1a4)| + δ.

An immediate and important consequence of Definitions 1 and 2 is that we
are now able to establish the frequency and the δ-freeness of any pattern only
with its extension. The next section explains how to compute efficiently the
extensions.

3.3 A New Property to Compute Extension

The Property 2 allows to compute the extension of a pattern X from the exten-
sion of two of its subsets provided that their union is equal to X . So, from the
extensions of the patterns at the level k, we are able to determine the extensions
of the patterns at the level k + 1.

Property 2. Let X1 and X2 be two patterns, the extension of X1 ∪ X2 is equal
to g(X1) ∩ g(X2).
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Proof. ⊆ We have X1 ⊆ X1 ∪ X2 and X2 ⊆ X1 ∪ X2. As g is a decreasing
function, we obtain that g(X1 ∪ X2) ⊆ g(X1) and g(X1 ∪ X2) ⊆ g(X2) so we
have immediately g(X1 ∪ X2) ⊆ g(X1) ∩ g(X2).
⊇ Let us consider o an object of g(X1) ∩ g(X2). By definition, o contains the
patterns of attributes X1 and X2. As a consequence, we deduce that o contains
X1 ∪ X2. So o belongs to g(X1 ∪ X2).

For instance, in the example in Table 1: g(a1a8) = o3o4, g(a3a5) = o1o2o3
and g(a1a3a5a8) = o3 = g(a1a8) ∩ g(a3a5).

Several advantages stem from this property for mining patterns in large data.
Firstly, as already said, the extensions are short patterns, easy to store and their
intersections are computed in a short time. Secondly, to get the extension of a
pattern X , we only have to compute the intersection of the extensions of two
subsets of X (and not of all its subsets). Thirdly, the database is only scanned
once (for patterns of length 1, i.e., items). On the contrary of the running of an
usual levelwise algorithm, this avoids storing for each level of the search space
all the candidate patterns.

We will see in Section 4 that it is sufficient to use Property 2 on patterns
having the same length and a common prefix to mine frequent δ-free patterns in
large data.

3.4 A New Pruning Criterion

This section presents a new pruning criterion for mining frequent δ-free pat-
terns. First, let us note that, as both the frequency and the δ-freeness are anti-
monotonous constraints, we naturally use the efficient pruning properties linked
to such constraints [12]. Nevertheless, we go further and we highlight a new
pruning criterion (Criterion 1) which comes from Theorem 1. This new pruning
criterion is based on the common use of the minimal frequency and the δ-freeness
properties.

Theorem 1. Let X be a pattern. If X is a γ-frequent and δ-free pattern then
for all X1 ⊂ X, |g(X1)| is greater than γ + δ.

Proof. Theorem 1 is an immediate consequence of Definitions 1 and 2. X is
a γ-frequent and δ-free pattern. Definitions 1 and 2 imply that for all X1 ⊂
X, γ + δ ≤ |g(X)| + δ < |g(X1)|.

Pruning Criterion 1. Let X be a pattern such that |g(X)| ≤ γ + δ, there is
no superset of X being a γ-frequent δ-free pattern. So a levelwise algorithm can
prune the search space from X.

Criterion 1 is obtained by the contrapositive of Theorem 1. Let us examine
the pattern a5a7 in the example in Table 1. a5 and a7 are 1-frequent and 1-free.
They cannot be pruned by using classical pruning properties of anti-monotonous
constraints and a5a7 is generated. Nevertheless, by using Criterion 1, a5a7 is not
a candidate because |g(a7)| = 2 = γ + δ. The explanation of this pruning is
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the following. To be 1-frequent, |g(a5a7)| should be greater than or equal to
1. But, to be 1-free, |g(a5a7)| should be smaller than |g(a7)| − 1 = 1. So, the
minimal frequency is in contradiction with the δ-freeness and a5a7 cannot satisfy
simultanously these constraints.

4 FTminer

This section presents FTminer (FT for Free faT1 databases Miner), an
algorithm based on our approach given in Section 3. FTminer extracts all the
γ-frequent δ-free patterns from a database r. It follows the outline of levelwise al-
gorithms. Let us recall that its originality is that there is no generation phase for
all candidates which is very useful for large data. The database is only scanned
once (for items) and, thanks to the use of extension, generation and verifica-
tion are simultaneous. The process is also speeded up by the pruning Criterion 1.

FTminer ( database r, threshold γ, number of exceptions δ )

1. Free1 := {a ∈ A | |O| − δ > |g(a)| ≥ γ}
2. Gen1 := {a ∈ Free1 | |g(a)| > γ + δ)}
3. k := 1
4. while Genk �= ∅ do
5. for each (Y ∪ {A}, Y ∪ {B}) ∈ Genk × Genk do

// generation of one candidate of length k + 1
6. X := Y ∪ {A} ∪ {B}
7. g(X) := g(Y ∪ {A}) ∩ g(Y ∪ {B})

// γ-frequency
8. if |g(X)| ≥ γ then

// δ-freeness
9. i := 1

10. while i ≤ k + 1 and X\{xi} ∈ Genk and
|g(X)| + δ < |g(X\{xi})| do

i := i + 1
11. od
12. if i = k + 2 then
13. Freek+1 := Freek+1 ∪ {X}
14. if |g(X)| > γ + δ then
15. Genk+1 := Genk+1 ∪ {X}
16. od
17. k := k + 1
18. od
19. return

⋃k−1
i=1 Freei

1 The word “fat” is also used to refer to large data sets as indicated for instance by
D. Hand during his invited talk at PKDD’04.
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Let Freek be the set of the free patterns at the level k whose frequency is
greater than or equal to γ and Genk be the set of generators at the level k i.e.,
the patterns in Freek with a frequency greater than γ + δ.

The first step is the initialization of Free1 and Gen1. One scan on the
database enables to compute the extension of the items and to determine whether
they are γ-frequent and δ-free or not and Free1 is obtained (Line 1). The initial-
ization of Gen1, using the pruning Criterion 1, stands in Line 2 and Gen1 contains
the γ-frequent δ-free patterns which have a frequency greater than γ + δ.

The main loop begins in Line 4: it stops when there is no generators left at
the considered level. For generating one candidate X at the level k + 1 (Line 5),
two patterns having a common prefix Y of length k − 1 are joined (Line 6).
The computation of the extension of X by intersecting the extensions of its
generators is performed Line 7 using Property 2. In Line 8, Definition 1 is used
to test whether the candidate X is γ-frequent thanks to its extension.

The loop begining at Line 10 considers every subset of X of length k. For
each one (except for the two generators) the algorithm checks if it belongs to
Genk (i.e., if it is γ-frequent, δ-free and if its frequency is greater than γ + δ)
and if its frequency is greater than the frequency of the candidate plus δ. If X
satisfies all the tests (Line 12), it is added in Freek+1. Moreover, X is also a
generator if its frequency is greater than γ + δ using Criterion 1.

Theorem 2 shows that FTminer is correct and complete.

Theorem 2. The algorithm FTminer extracts all the γ-frequent and δ-free pat-
terns from the database r.

Proof (Correctness). Let us prove that a pattern X in Freek is a γ-frequent δ-
free pattern. We test at Line 8 if |g(X)| ≥ γ, what ensures that X is γ-frequent.
At Line 10, we establish that X is δ-free using the condition |g(X)| + δ <
|g(X\{xi})| (cf. Definition 2).

Proof (Completeness). The algorithm FTminer covers the whole attribute
search space thanks to the principle of the levelwise algorithms. The accuracy
of the used pruning criteria (properties of anti-monotonous constraints and Cri-
terion 1) entails the completeness of FTminer.

5 Experiments

The aim of the experiments is to show the run-time benefit brought by FTminer

and emphasizes that FTminer is able to mine frequent δ-free patterns in sit-
uations where prototypes (even taking benefit from condensed representations)
fail. In Section 5.1 we compare on benchmarks FTminer to MVminer. The
latter is a common prototype to extract condensed representations composed of
δ-free patterns2. Let us note that it is equivalent to ACminer implemented by

2
MVminer has been implemented by François Rioult (GREYC).
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A. Bykowski (LIRIS) [5]. To the best of our knowledge, there exists no other
prototype to mine frequent δ-free patterns. Section 5.2 widens the comparison
to real gene expression data sets.

All the tests were performed on a 2.20 GHz Pentium IV processor with Linux
operating system by using 3Go of RAM memory.

5.1 Results on Benchmarks

The benchmarks come from the UCI repository3.

Benchmarks with a Lot of Attributes. In order to get large benchmarks, we
transposed the CMC and ABALONE data sets. Thus, in the following, the used data
sets have 30 rows and 1474 columns for CMC, 30 rows and 4178 columns for
ABALONE. Figure 1 plots the comparison between FTminer and MVminer on
run-times during the computation of frequent 0-free patterns according to the
frequency threshold γ. γ ranges from 10 to 6 (37 to 20 percent) for CMC, 9 to 6
(30 to 20 percent) for ABALONE.
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Fig. 1. Run-time performances according to the frequency on large data

As expected, the run-time increases when γ decreases. FTminer clearly out-
performs MVminer (Figure 1). The latter fails when γ is equal to 5 (17%) for
lack of memory while FTminer ends in 2420 s on CMC. MVminer also fails on
ABALONE when γ is equal to 6 (20%).

Benchmarks with Usual Dimensions. Out of curiosity, we test FTminer on
data with usual dimensions i.e. having much more rows than attributes. We
used the benchmarks MUSHROOM and PUMSB (from UCI repository). MUSHROOM
is a 8124 × 120 data and PUMSB a 49046 × 7118 data. Figure 2 indicates that
FTminer runs faster than MVminer even if there is an important number of

3 http://www.ics.uci.edu/~mlearn/MLSummary.html

http://www.ics.uci.edu/~mlearn/MLSummary.html
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Fig. 2. Run-time performances according to the frequency on data having usual
dimensions

objects in MUSHROOM and PUMSB. However, in one situation (PUMSB benchmark
with a relative frequency threshold of 75.5%), FTminer was lacking of memory
due to the size of the extensions while MVminer ends in 8829 seconds. This
result was expected because the benefit of using the extension on large data
(i.e., few patterns of objects) might not be reached on huge data with usual
dimensions.

5.2 Results on Gene Expression Data Sets

We performed similar comparisons on a publicly available human Serial Anal-
ysis of Gene Expression (SAGE) data set4 SAGE is an experimental technique
designed to quantify gene expression. SAGE data provide expression values for
given biological situations and given genes. These data sets are characterized by
a large number of columns and few biological situations. For instance, the data
set used for these experiments gathers 27,679 gene expressions for 90 biological
situations.

Figure 3 (left) plots the run-times for mining the 3-free patterns with γ
varying from 30 to 24 (33 to 27 percent). We used a logarithmically scaled
ordinate axis. With a relative frequency threshold of 33.3%, FTminer spends
30 seconds whereas one day is needed for MVminer. With a threshold of 32%,
FTminer spends 50 seconds and MVminer more than two days. Such results
show the efficiency of FTminer on large data.

Another aim was to experimentally quantify the efficiency of the new pruning
criterion (Criterion 1). Figure 3 (right) plots the run-times of the extractions with
and without this pruning criterion according to the number of exceptions. The
run-time benefit is important: for γ = 27 (corresponding to 30%) and δ = 5,
it spends 31 seconds to extract the frequent δ-free patterns using Criterion 1
and 527 seconds without. In average, the run-time is divided by 7 thanks to
4 This data set comes from the CGMC laboratory (CNRS UMR 5534) and has been

prepared by Olivier Gandrillon and Sylvain Blachon.
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Criterion 1. This can be explained by the large number of candidates additionally
pruned thanks to this criterion: when γ = 27 and δ = 5, this number is divided
by 52, from 732,557,270 to 14,056,991.

Obviously this approach runs on other gene expression data sets. Out of cu-
riosity, we ran our prototype on the gene expression data GDS464 from the Gene
Expression Omnibus repository5 This data (collected in Dual-Channel experi-
ments) gives the expression of 7085 genes in 90 biological situations. Figure 4
shows the run-times for mining the 2-free patterns according to γ (logarithmi-
cally scaled ordinate axis). The extraction becomes intractable with MVminer

when γ is less than 20%.
These experiments show that using both the extensions and the new pruning

criterion enables to mine frequent δ-free patterns in large data whereas other
approaches fail.
5 Publicly available at URL http://www.ncbi.nlm.nih.gov/projects/geo/gds/gds
browse.cgi?gds=464

http://www.ncbi.nlm.nih.gov/projects/geo/gds/gds_browse.cgi?gds=464
http://www.ncbi.nlm.nih.gov/projects/geo/gds/gds_browse.cgi?gds=464
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5.3 Discussion

These experiments prove the practical interest of the use of the extension in the
case of large data sets. Nevertheless, Section 5.1 shows that the use of exten-
sion could also be efficient when mining data with usual dimensions (i.e., a large
number of objects and few attributes). Furthermore, even in such data, the com-
putational cost of the closures is more expensive than the one of the extension.
It may be explained by the fact that the computing of a closure requires to in-
tersect all the objects containing a given pattern in the data set. The computing
of an extension is purely limited to the intersection of two objects as explained
in Section 3.3.

6 Conclusion

Mining patterns in large data is a difficult task due to the large number of
attributes. It is an important challenge because a lot of data sets have such geo-
metrical dimensions and patterns like frequent δ-free are required by the owners
of the data for several uses like classes characterization or classification. In this
paper, we have proposed a new method based on a efficient way to compute the
extension of a pattern and a pruning criterion to mine frequent δ-free patterns
in large databases. A key point of the success of this approach is that the ex-
tensions in large data gather small object patterns easy to store. Experiments
on benchmarks and a real gene expression data set show the practical use of
this approach. Further work deals with the use of the extension to improve the
extraction of patterns satisfying other constraints.
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