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Abstract. Constraint-based pattern discovery is at the core of numer-
ous data mining tasks. Patterns are extracted with respect to a given
set of constraints (frequency, closedness, size, etc). In practice, many
constraints require threshold values whose choice is often arbitrary. This
difficulty is even harder when several thresholds are required and have
to be combined. Moreover, patterns barely missing a threshold will not
be extracted even if they may be relevant. In this paper, by using Con-
straint Programming we propose a method to integrate soft threshold
constraints into the pattern discovery process. We show the relevance
and the efficiency of our approach through a case study in chemoinfor-
matics for discovering toxicophores.

1 Introduction

Extracting knowledge from large amounts of data is at the core of the Knowl-
edge Discovery in Databases. This involves different challenges, such as designing
efficient tools to tackle data and the discovery of patterns of a potential user’s
interest. Many authors [9,10] have promoted the use of constraints to represent
background knowledge and to focus on the most promising knowledge by re-
ducing the number of extracted patterns to those of a potential interest given
by the final user. The most popular example with local patterns is the mini-
mal frequency constraint based on the frequency measure: it addresses all pat-
terns having a number of occurrences in the database exceeding a given minimal
threshold.

In practice, data mining tasks require to deal both with pattern characteristics
(e.g., frequency, size, contrast [11]) and background knowledge (e.g., price in
the traditional example of supermarket databases, chemical features such as
aromaticity in chemoinformatics). Then several measures have to be handled
and combined leading to entail choosing several threshold values.

This notion of thresholding has serious drawbacks. Firstly, unless specific do-
main knowledge is available, the choice is often arbitrary and relevant patterns
are missed or lost within a lot of spurious patterns. This drawback is obvi-
ously even deeper when several measures have to be combined and thus several
thresholds are needed. A second drawback is the stringent aspect of the classical
constraint-based mining framework: a pattern satisfies or does not satisfy the
set of constraints. But, what about patterns that respect only some thresholds,
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especially if only very few constraints are slightly violated? There are very few
works such as [3] which propose to introduce a softness criterion into the min-
ing process as we will see in Section 6. This thresholding issue is also present
in pattern set mining [15] where the goal is to mine for a set of patterns with
constraints combing several local patterns. An example is the top-k pattern ap-
proaches [7,16]: by associating each pattern with a rank score, these approaches
return an ordered list of the k patterns with the highest score to the user [16].
However, the performance of top-k approaches are sensitive to both the thresh-
old value k and the thresholds of the aggregated measures in the score function.
This paper deals with these issues.

The key contribution of this paper is that we show how constraint relaxation,
developed for Constraint Programming, can be applied to propose a soft con-
straint based pattern mining framework.

Our approach benefits from the recent progress on cross-fertilization between
data mining and Constraint Programming [8,14,6]. The common point of all
these methods is to model in a declarative way pattern mining as Constraint
Satisfaction Problems (CSP), whose resolution provides the complete set of so-
lutions satisfying all the constraints.

Our approach proceeds as follows. First, to each soft threshold constraint is
associated a violation measure to determine the distance between a pattern and
a threshold. Then, soft threshold constraints are transformed into equivalent
hard constraints that can be directly handled by a CSP solver. We show how
soft threshold constraints can be exploited for extracting the top-k patterns
according to an interestingness measure. The technique fully benefits from the
handling of the soft threshold constraints: contrary to the data mining methods,
the top-k patterns can include patterns violating constraints on the measures
given by the user. Our method offers a natural way to simultaneously combine
in a same framework usual data mining measures with measures coming from
the background knowledge. The relevance of our approach is highlighted through
a case study in chemoinformatics for discovering toxicophores.

This paper is organized as follows. Section 2 presents the context. Section 3
describes the disjunctive relaxation framework we used to model and solve soft
threshold constraints. Section 4 focusses on mining top-k patterns. Section 5
presents the case study in chemoinformatics for discovering toxicophores and
reports our experimental results. Finally, we review related work in Section 6.

2 Context and Motivations

2.1 Definitions

Let I be a set of distinct literals called items. An itemset (or pattern) is a non-
null subset of I. The language of itemsets corresponds to LI = 2I\∅. A transac-
tional dataset is a multiset of patterns of LI . Each pattern (or transaction) is a
database entry. Table 1 (left side) presents a transactional dataset T where each
transaction ti gathers articles described by items denoted A,. . . ,F . The tradi-
tional example is a supermarket database in which each transaction corresponds
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Table 1. Transactional dataset T

Trans. Items

t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

Items A B C D E F

Price 30 40 10 40 70 55

to a customer and every item in the transaction to a product bought by the
customer. A price is associated to each product (cf. Table 1, right side).

Constraint-based pattern mining aims at extracting all patterns of LI satisfy-
ing a query (conjunction of constraints). A very usual example is the frequency
measure leading to the minimal frequency constraint. The latter provides pat-
terns Xi having a number of occurrences in the database exceeding a given
minimal threshold minfr: freq(Xi) ≥ minfr. Another well-known measure is
the size of a pattern, i.e. the number of items that a pattern contains. In many
applications, it appears highly appropriate to look for contrasts between subsets
of transactions, such as toxic and non toxic molecules in chemoinformatics. The
growth rate is a well-used contrast measure [11]. Let T be a database partitioned
into two subsets D1 and D2:

Definition 1 (Growth rate). The growth rate of a pattern Xi from D2 to D1

is:

mgr(Xi) =
|D2| × freq(Xi,D1)

|D1| × freq(Xi,D2)

Emerging Patterns and Jumping Emerging Patterns stem from this measure.
They are at the core of a useful knowledge in many applications involving clas-
sification features such as the discovery of structural alerts in chemoinformatics.

Definition 2 (Emerging Pattern). Given a threshold mingr > 1, a pattern
Xi is said to be an Emerging Pattern (EP) from D2 and D1 if mgr(Xi) ≥ mingr.

Definition 3 (Jumping Emerging Pattern). A pattern Xi which does not
occur in D2 (mgr(Xi) = +∞) is called a Jumping Emerging Pattern (JEP).

Moreover, the user is often interested in discovering richer patterns satisfying
properties involving several local patterns. These patterns correspond to pattern
sets [15] or n-ary patterns [8]. The approach that we present in this paper is able
to deal with pattern sets such as the top-k patterns.

2.2 Motivating Example

Example 1. Let us consider the following query q(Xi). It addresses all frequent
patterns (minfr = 4), having a size greater than or equal to 3, and an average
price (avgPrice) greater than 45:
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q(Xi) ≡ freq(Xi) ≥ 4 ∧ size(Xi) ≥ 3 ∧ avgPrice(Xi) ≥ 45

Thereafter, we use the notation Xi < v1,v2,v3 >, where Xi is a pattern, and
v1, v2, v3 denote its value for the three measures: freq, size and avgPrice. When
considering only the frequency constraint, we get 17 solutions. With the conjunc-
tion of the three constraints, there is only one solution: BDE < 4,3,50 >. Let
us consider the following four patterns which are missed by the mining process:

– BEF < 3, 3, 55 >
– CDE < 4, 3, 40 >

– BCE < 4, 3, 40 >
– BCDE < 4, 4, 40 >

The pattern BEF slightly violates the frequency threshold and satisfies the two
other constraints. However, this pattern is clearly interesting because its value
on the average price measure is largely higher than the value of BDE which
satisfies the query. By slightly relaxing the frequency threshold (freq(Xi) ≥ 3),
BEF would be extracted.

Similarly, relaxing the average price threshold (avgPrice(Xi) ≥ 40) would
enable to discover three new patterns: CDE, BCE and BCDE. Due to the
uncertainty inherent to the determination of the thresholds, it is difficult to say
that these patterns are less interesting than BDE which is produced. So, the
stringent aspect of the classical constraint-based mining framework means that
interesting patterns are lost as soon as at least one threshold is slightly violated.
Moreover, in real life applications, all threshold constraints are not considered to
be equally important, and this characteristic should be taken into account in the
mining process. Overcoming these drawbacks is the motivation of our proposal.

3 Modeling and Solving Soft Threshold Constraints

This section shows how soft threshold constraints can be transformed into equiva-
lent hard constraints that can be directly handled by a CSP solver with a method
using the disjunctive relaxation framework [12].

3.1 Constraint Relaxation

Constraint relaxation is a technique to deal with over-constrained problems,
i.e., problems with no solution satisfying all the constraints. Over-constrained
problems are generally modeled as Constraint Optimization Problems (COP).
Violation measures associate costs to constraints in order to quantify their vio-
lation. A global objective related to the whole set of costs is usually defined (for
example to minimize the total sum of costs).

Definition 4. (violation measure). μc is a violation measure for the con-
straint c(X1, ..., Xn) iff μc is a function from D1 × D2 × ... × Dn to �+ s.t.
∀A ∈ D1 ×D2 × ...×Dn, μc(A) = 0 iff A satisfies c(X1, ..., Xn).

For a given constraint, several violation measures can be defined. For the soft
threshold constraints which will be studied in Section 3.3, we propose two dif-
ferent violation measures.
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3.2 Disjunctive Relaxation

Over constrained problems can be modeled using disjunctive relaxation [12]. To
each soft constraint c are associated a violation measure μc and a cost variable
zc that measure the violation of c. So the COP is transformed into a CSP where
all constraints are hard and the cost variable z =

∑
c zc will be minimized. If

the domain of a cost variable is reduced during the search, propagation will be
performed on domains of other cost variables. Each soft constraint is modeled
as a disjunction: either the constraint is satisfied and the cost is null, or the
constraint is not satisfied and the cost is specified.

Definition 5 (disjunctive relaxation of a constraint). Let c be a con-
straint, c̄ its negation and z the associated cost variable. The disjunctive re-
laxation of c is c′ ≡ [c ∧ (z = 0)] ∨ [c̄ ∧ (z > 0)]

Example 2. Let X1=X2 be a binary constraint over variables X1 and X2 with
domains D1=D2={1,2,3}. Let z be the associated cost variable and μ the viola-
tion measure defined as the distance between the two variables. The disjunctive
relaxation of c ≡ (X1=X2) is c′ ≡ [X1 = X2 ∧ z = 0] ∨ [X1 �= X2 ∧ z = |X1 −X2|].

We have selected the disjunctive relaxation framework for two reasons. First, as
any soft threshold constraint can be transformed into an equivalent hard con-
straint (Section 3.4), this enables to integrate relaxation in existing CSP solvers
and to benefit from progress made in this area. Moreover, we can directly include
soft threshold constraints in our n-ary pattern extractor based on Constraint
Programming [8].

3.3 Violation Measures for Soft Threshold Constraints

In this section, we take as an introductory example the frequency measure, then
we consider any measure.

Frequency measure. Let Xi be a pattern, α a minimal threshold and the
constraint freq(Xi) ≥ α. A first violation measure μ1 can be defined as the
absolute distance from threshold α. However, to combine violations of several
threshold constraints, it is more appropriate to consider relative distances. A
second violation measure μ2 can be defined as the relative distance from α:

μ2(Xi) =

{
0 if freq(Xi) ≥ α

α−freq(Xi )
α otherwise

For any measure m. Let I be a set of distinct items and T a set of trans-
actions. Let maxm be the maximum value1 for measure m. Violation measures
are defined as follows:

1 For the frequency measure, maxm=|T |; for the size measure, maxm=|I|.
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For c ≡ m(Xi) ≥ α μ2(Xi) =

{
0 if m(Xi) ≥ α

α−m(Xi)
α otherwise

For c ≡ m(Xi) ≤ α μ2(Xi) =

{
0 if m(Xi) ≤ α

m(Xi)−α
maxm−α otherwise

Violation measures are normalized in order to combine violations of several
threshold constraints occurring in a same query. For semantic μ2, violation values
will be real numbers ranging from 0.0 to 1.0.

3.4 From Soft Constraints to Equivalent Hard Constraints

This section shows how to transform any soft threshold constraint into an equiv-
alent hard constraint. First, we present the CSP modeling for the n-ary pattern
mining problem. Then, we describe the transformation and the resulting CSP.

Initial CSP. Let T be a set of transactions and I the set of all its items. The
n-ary itemset mining problem can be modeled as a CSP P=(X ,D, C) where:

– X = {X1, ..., Xn}. Each variable Xi represents an unknown pattern.
– D = {DX1 , ..., DXn}. Initial domain of Xi is the set interval [∅ .. I].
– C = Cens ∪ Cnum is the whole set of constraints where:

• Cens is a conjunction of set constraints handling set operators.
Examples: X1 ⊂ X2, I ∈ X4, ...

• Cnum is is a conjunction of numerical constraints.
Examples: |freq(X1) − freq(X2)| ≤ α1, size(X4) < size(X1) + 1, . . .

More information on the implementation of the above constraint-based pattern
mining task using Constraint Programming techniques are in [8,6].

Transformation for the frequency measure. Let Xi be a pattern, α a
minimal threshold and the constraint c ≡ freq(Xi) ≥ α. Let z be the associated
cost variable. The disjunctive relaxation of c for μ2 is:

[(freq(Xi) ≥ α) ∧ z = 0] ∨ [(freq(Xi) < α) ∧ z =
α− freq(Xi)

α
]

This disjunction can be reformulated in an equivalent way by the following (hard)
constraint:

z = max(0,
α− freq(Xi)

α
)

Transformation for any measure m. By applying the previous transforma-
tion, soft threshold constraints associated to a measure m can be transformed
into equivalent hard constraints:
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– The relaxation of c ≡ (m(Xi) ≥ α) is c′ ≡ [z = max(0, α−m(Xi)
α )]

– The relaxation of c ≡ (m(Xi) ≤ α) is c′ ≡ [z = max(0, m(Xi)−α
maxm−α )]

Thus, any query containing one or more soft threshold constraints ci can be
transformed into an equivalent query with only hard constraints: if ci is a hard
constraint then it remains unchanged; if ci is a soft threshold constraint then it is
replaced by its transformation. Then, we define the global cost variable z=

∑
ci
zi

representing the total sum of violations, where zi is the cost variable associated to
the soft threshold constraint ci. Finally, we add the constraint z ≤ λ, where λ is
the maximum amount of violation that is allowed (λ ∈ [0.0 , 1.0]). This parameter
(λ) quantifies a deviation from the measure thresholds, thus its semantics is
understandable to the user.

Resulting CSP. Let P ′
=(X ′

,D′
, C′

) be the CSP obtained by the disjunctive
relaxation of the initial CSP P=(X ,D, C):

– X ′
= X

⋃
1≤i≤k{zi} ∪ {z},

– D′
= D

⋃
1≤i≤k{Dzi} ∪ {Dz} with Dzi=[0.0 , 1.0] and Dz=[0.0 , λ],

– C′
= Cens ∪ C′

num ∪ {z =
∑

1≤i≤k zi} with C′
num = Chard ∪ Cdisj where:

• Chard is the set of (initial) hard numerical constraints,
• Cdisj is the set of hard constraints associated to the soft threshold con-
straints.

The steps presented above lead to a soft constraint based pattern mining frame-
work. The next section shows how this framework also addresses pattern sets
such as the top-k patterns.

4 Mining top-k Patterns with an Interestingness Measure

Looking for the k patterns optimizing an interestingness measure is an attractive
data mining task [7,16]. These pattern sets are called top-k patterns. The top-
k pattern methods associate each pattern with a rank score and compute an
ordered list of the k patterns with the highest score. Rank scores are determined
by interestingness measures provided by the user [7,16]. In this section, we define
an interestingness measure enabling us to exploit our method on pattern mining
with soft threshold constraints. The technique fully benefits from the handling of
the soft threshold constraints: the top-k patterns can include patterns violating
constraints on the measures given by the user. Up to now, data mining techniques
are not able to take into account softness in top-k mining.

Let us consider the constraint freq(Xi) ≥ α. A pattern Xi having a frequency
much larger than the threshold α, will be considered as more interesting than a
pattern Xj whose frequency is slightly higher than α.
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Interestingness of a pattern for a threshold constraint. An interestingness
measure of a pattern for a threshold constraint c may be either positive (when c
is satisfied) or negative (when c is not satisfied). As for a violation measure (see
Section 3.3), an interestingness measure is also normalized in order to combine in-
terests of several threshold constraints occurring in a same query. Let M be a set
of measures. Letm ∈ M be a measure, andmaxm its maximal value.

We define the interestingness measure θm :: LI → [-1.0 , 1.0] by:

For c ≡ m(Xi) ≥ α θm(Xi) =

⎧
⎨

⎩

m(Xi)−α
maxm−α

if m(Xi) ≥ α

−μ2(Xi) otherwise

For c ≡ m(Xi) ≤ α θm(Xi) =

⎧
⎨

⎩

α−m(Xi)
α

if m(Xi) ≤ α

−μ2(Xi) otherwise

Interestingness of a pattern for a query. Let M be a set of measures and
a query expressed as a conjunction of threshold constraints for these measures.
We define the interestingness of a pattern for a query as the sum of the interests
of this pattern for threshold constraints.

θ(Xi) =
∑

m∈M γm × θm(Xi)

where γm is a coefficient reflecting the importance of the measure m.
The top-k patterns are extracted w.r.t the measure θ.

Computing the top-k patterns. Let q(Xi) be a query involving soft threshold
constraints and λ the maximal amount of violation that is allowed. Let q′(Xi)
be the hard query associated to both q(Xi) and λ (see Section 3.4).

Computing the top-k patterns, for the query q′(Xi) according to the interest-
ingness measure θ, is performed as follows. The first k solutions (s1, s2, ..., sk)
for the query q′(Xi) are computed and ordered according to the interestingness
measure θ. Then, as soon as a new solution s′ is obtained, if (θ(s′) > θ(sk)) then
s′ is inserted in the top-k solutions and sk is removed. Furthermore, the con-
straint (θ(Xi) > θ(sk)) is dynamically posted in order to improve the pruning
of the search tree.

5 Experiments

Toxicology is a scientific discipline involving the study of the toxic effects of
chemicals on living organisms. A major issue in chemoinformatics is to establish
relationships between chemicals and a given activity (e.g., CL502 in ecotoxic-
ity). Chemical fragments3 which cause toxicity are called toxicophores and their

2 Lethal concentration of a substance required to kill half the members of a tested
population after a specified test duration.

3 A fragment denominates a connected part of a chemical structure containing at least
one chemical bond
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discovery is at the core of prediction models in (eco)toxicity [1,13]. The aim
of this present study, which is part of a larger research collaboration with the
CERMN Lab4, a laboratory of medicinal chemistry, is to investigate the use of
soft threshold constraints for discovering toxicophores.

5.1 Settings

The dataset is collected from the ECB web site5. For each chemical, the chemists
associate it with hazard statement codes (HSC) in 3 categories: H400 (very toxic,
CL50 ≤ 1 mg/L), H401 (toxic, 1 mg/L < CL50 ≤ 10 mg/L), and H402 (harmful,
10 mg/L < CL50 ≤ 100 mg/L). We focus on the H400 and H402 classes. The
dataset T consists of 567 chemicals, 372 from the H400 class and 195 from the
H402 class. The chemicals are encoded using 129 frequent subgraphs previously
extracted from T 6 with a 10% relative frequency threshold (experiments with
lower thresholds did not bring significant results for the chemists).

In order to discover patterns as candidate toxicophores, we use both measures
typically used in contrast mining [11] such as the growth rate since toxicophores
are linked to a classification problem with respect to the HSC and measures
expressing the background knowledge such as the aromaticity or density be-
cause chemists consider that this information may yield promising candidate
toxicophores. Our method offers a natural way to simultaneously combine in a
same framework these measures coming from various origins. We briefly sketch
these measures and the associated threshold constraints.

Growth rate. When a pattern has a frequency which significantly increases
from the H402 class to the H400 class, then it stands a potential structural
alert related to the toxicity. In other words, if a chemical has in its structure
fragments that are related to a toxic effect, then it is more likely to be toxic.
Emerging patterns embody this natural idea by using the growth-rate measure
(cf. Section 2.1). Let mingr be a minimal growth threshold. We impose the soft
threshold constraint: mgr(Xi) ≥ mingr.

Frequency. Real-world datasets are often noisy and patterns with low frequency
may be artefacts. The minimal frequency constraint ensures that a pattern is
representative enough (i.e., the higher the frequency, the better it is). Thus we
use the following soft threshold constraint: freq(Xi) ≥ minfr, where minfr is
a minimal frequency threshold.

Aromaticity. Chemists know that the aromaticity is a chemical property that
favors toxicity since their metabolites can lead to very reactive species which can
interact with biomacromolecules in a harmful way. We compute the aromaticity
of a pattern as the mean of the aromaticity of its chemical fragments. Let ma

4 Centre d’Etudes et de Recherche sur le Médicament de Normandie, UPRES EA 4258
FR CNRS 3038, Université de Caen Basse-Normandie.

5 European Chemicals Bureau http://ecb.jrc.ec.europa.eu/documentation/ now
http://echa.europa.eu/

6 A chemical Ch contains an item A if Ch supports A, and A is a frequent subgraph
of T .

http://ecb.jrc.ec.europa.eu/documentation/
http://echa.europa.eu/
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be the aromaticity measure of a pattern. We get the soft threshold constraint:
ma(Xi) ≥ mina, where mina is a minimal aromaticity threshold.

Density. In addition, chemists consider that the density of chemicals may yield
an interest for candidate toxicophores. A common hypothesis is that the higher
the chemical density, the stronger its chemical behavior. The density of a pat-
tern is given by the mean of density of its subgraphs7. Let md be the density
measure of a pattern and mind a minimal threshold leading to the soft threshold
constraint: md(Xi) ≥ mind

Finally, we get the following query q(Xi):
mgr(Xi) ≥ mingr ∧ freq(Xi) ≥ minfr ∧ma(Xi) ≥ mina ∧md(Xi) ≥ mind

5.2 Experimental Protocol

The thresholds on aromaticity and density measures were set to 2/3 of the max-
imal values of these measures on the dataset (mina=60 and mind=60). Indeed,
high thresholds suggest an interest for candidate toxicophores. The minimal
growth rate and the minimal frequency thresholds were fixed to 1/4 of the max-
imal values of these measures (mingr=5 and minfr=90) in order to keep only
the most frequent emerging patterns (EPs) with the highest growth rates. Set-
ting these thresholds might be subtle and it illustrates the interest of the soft
constraints because the choice of the user is then downplayed.

We consider three different values for λ : {0, 20%, 40%}. For the interesting-
ness measure θ, we set γgr, γfr and γd to 1 et γa to 2. Indeed, aromaticity is
the most important chemical knowledge. The extracted EPs are made of molec-
ular fragments and to evaluate the presence of toxicophores in their description,
we identified six fragments based on well-known environmental toxicophores,
namely the benzene, the phenol ring, the chloro-substituted aromatic ring (i.e.,
chlorobenzene), the organo-phosphorus moiety, the aniline aromatic ring, and
the pyrrole.

Experiments were conducted on a computer running Linux operating system
with a core i3 processor at 2,13 GHz and a RAM of 4 GB. The implementation
of our approach was carried out in Gecode by extending the n-ary patterns
extractor based-CSP [8].

5.3 Extracting Frequent Emerging Patterns

Table 2 depicts the numbers of EPs containing at least one complete toxicophore
compound (columns marked T) or sub-fragments of a toxicophore (columns
marked F) among the six fragments previously identified in the database ac-
cording to the three values of λ. Col. 2-7 provide the total number of solutions,
Col. 8-13 over the top25 and Col. 14-19 over the top50. As the two categories T
and F are not disjoint, the cumul of the number of EPs in the two categories

7 The density of a subgraph is equal to 2e/v(v − 1), where e (resp. v) is the number
of its edges (resp. vertices).
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Table 2. Numbers of emerging patterns according to known toxicophores

Total top-25 top-50

λ 0 20% 40% 0 20% 40% 0 20% 40%

# Solutions 7650 402204 4289335 28 37 57 55 64 85

T F T F T F T F T F T F T F T F T F

Benzene
c1ccccc1 1912 7573 183881 396749 1565883 4210482 0 25 2 25 6 24 7 50 7 50 8 49

Phenol
c1(ccccc1)O 900 4519 93632 217195 556890 3234279 2 9 6 3 2 0 4 18 9 12 5 8

Chlorobenzene
Clc1ccccc1 0 3041 74182 184502 253429 509281 0 14 2 14 2 1 0 28 7 22 2 15

Pyrrole
c1cncc1 1 1 1

may exceed #(Solutions). The CPU time for extracting the set of all solutions
is 16 s. for (λ=0), 2 min. for (λ=20%) and 2h22 min. for (λ=40%).

As shown in Table 2, 45%8(resp. 36.5%) of EPs with λ=20% (resp. 40%)
contain a benzene (fragment of category T), against 25% for λ=0. Thus, soft
thresholds allow to better discover this toxicophore (average gain of about 16%).
Regarding the category F, the proportion of EPs containing sub-fragments of
benzene (Smiles code9): {cc, ccc, cccc, ccccc}) is almost the same in the hard
and soft cases (about 98%). This trend is also confirmed for phenol ring, where
23% (resp. 13%) of extracted solutions with λ=20% (resp. 40%) include such
a fragment, against 11% for λ=0. Once again, soft thresholds enable to better
meet this toxicophore (average gain of about 7%).

For the chlorobenzene (with λ = 0), only patterns containing fragments of cat-
egory F are extracted : {Clc(c)cc, Clc(c)ccc, Clc(c)cccc, Clc(cc)ccc, Clccc . . .}.
The soft thresholds enable to find on average 19% of toxicophores containing
the chlorobenzene (i.e., fragment of category T). Moreover, for pyrrole, a new
pattern with a novel chemical characteristic (containing the subfragment nc) is
discovered. Indeed, this derivative, not detected with (λ = 0), is rather difficult
to extract as it is associated to a chemical fragment with a low value of frequency.

EPs containing the aniline aromatic ring are not detected because of their low
density (33). Indeed, with λ=40%, the minimal value allowed is 60×0.60=36.
Increasing very slightly λ (λ=45%), would permit the extraction of those EPs.
Finally, the organo-phosphorus fragment has the highest growth rate (+∞) and
thus is a JEP (cf. Definition 2). The chemists have a strong interest for such
patterns. They are not listed in Table 2 and we will come back on these patterns
in Section 5.5.

8 Ratio of the number of solutions containing a toxicophore by the total number of
solutions.

9 Smiles code is a line notation for describing the structure of chemical molecules :
http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

 http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
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Table 3. top25 emerging patterns

(a) top25 EP with λ=20%.

N In
te
re
st

Pattern G
ro
w
th

ra
te

F
re
q
u
en

cy

A
ro
m
a
ti
ci
ty

D
en

si
ty

SMILES

1 193 24 35 69 7 101 95 66 cc ccc c1(ccccc1)O

2 191 13 24 35 8 89 95 66 Clc1ccccc1 cc ccc

3 189 24 35 47 69 7 101 96 62 cc ccc cccc c1(ccccc1)O

4 187 13 24 35 47 8 89 96 62 Clc1ccccc1 cc ccc cccc

5 185 12 24 35 47 8 90 96 61 Clc(c)cccc cc ccc cccc

6 185 14 24 35 47 8 90 96 61 Clcccccc cc ccc cccc

7 185 24 35 47 68 6 103 96 61 cc ccc cccc ccccc(c)O

8 185 24 35 47 80 6 103 96 61 cc ccc cccc ccc(ccc)O

9 185 24 35 38 5 118 90 72 cc ccc cccO

10 184 24 35 47 78 8 89 96 61 cc ccc cccc Clc(cc)ccc

11 184 6 24 35 9 93 90 72 Clc(c)c cc ccc

12 184 8 24 35 47 9 93 94 64 Clc(c)cc cc ccc cccc

13 184 8 24 35 9 93 92 68 Clc(c)cc cc ccc

14 184 7 24 35 9 94 90 72 Clccc cc ccc

15 184 9 24 35 47 9 94 94 64 Clcccc cc ccc cccc

16 184 9 24 35 9 94 92 68 Clcccc cc ccc

17 183 24 35 47 59 69 7 101 97 57 cc ccc cccc ccccc c1(ccccc1)O

18 183 24 35 47 69 77 7 101 97 57 cc ccc cccc c1(ccccc1)O c1ccccc1

19 183 24 35 59 69 7 101 96 59 cc ccc ccccc c1(ccccc1)O

20 183 24 35 69 77 7 101 96 59 cc ccc c1(ccccc1)O c1ccccc1

21 183 12 24 35 8 90 94 64 Clc(c)cccc cc ccc

22 183 14 24 35 8 90 94 64 Clcccccc cc ccc

23 183 11 24 35 47 9 92 95 62 Clccccc cc ccc cccc

24 183 11 24 35 9 92 93 66 Clccccc cc ccc

25 183 10 24 35 47 9 93 95 62 Clc(c)ccc cc ccc cccc

(b) top25 EP with λ=40%.
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26 301 24 3 289 100 100 cc

27 275 15 7 65 100 100 nc

28 258 24 35 3 288 100 83 cc ccc

29 237 24 47 3 281 100 75 cc cccc

30 230 24 35 47 3 281 100 72 cc ccc cccc

31 224 24 59 3 279 100 70 cc ccccc

32 223 24 77 3 274 100 70 cc c1ccccc1

33 219 24 35 59 3 279 100 68 cc ccc ccccc

34 218 24 35 77 3 274 100 68 cc ccc c1ccccc1

35 216 35 3 288 100 65 ccc

36 213 24 35 76 3 274 100 66 cc ccc cccccc

37 213 24 76 3 274 100 66 cc cccccc

38 209 24 35 47 59 3 279 100 64 cc ccc cccc ccccc

39 208 24 35 47 77 3 274 100 64 cc ccc cccc c1ccccc1

40 206 24 47 59 3 279 100 63 cc cccc ccccc

41 205 24 47 77 3 274 100 63 cc cccc c1ccccc1

42 203 24 35 47 76 3 274 100 62 cc ccc cccc cccccc

43 200 24 47 76 3 274 100 61 cc cccc cccccc

44 200 24 35 59 77 3 274 100 61 cc ccc ccccc c1ccccc1

45 198 24 59 77 3 274 100 60 cc ccccc c1ccccc1

46 193 24 35 69 7 101 95 66 cc ccc c1(ccccc1)O

47 191 13 24 35 8 89 95 66 Clc1ccccc1 cc ccc

48 189 24 35 47 69 7 101 96 62 cc ccc cccc c1(ccccc1)O

49 187 13 24 35 47 8 89 96 62 Clc1ccccc1 cc ccc cccc

50 185 12 24 35 47 8 90 96 61 Clc(c)cccc cc ccc cccc

5.4 Mining the top-k Patterns

Results from Table 2 show that among the top25 (resp. top50) EPs mined with
λ=0, only 2 (resp. 4) patterns contain the phenol ring. Moreover, the topk EPs
are constituted solely of subfragments of benzene or chlorobenzene.

Table 3a gives the top25 EPs extracted with λ=20%. Yellow lines correspond to
patterns obtained with λ=0 and having at least one complete phenol ring, while
gray lines correspond to the new patterns mined with soft thresholds constraints
(the violated constraints are highlighted in black).

The soft thresholds enable us to find 4 new EPs containing the phenol ring
among the top25 patterns (lines 17 − 20), that represents a ratio of 3 (λ=20%
detects 3 times more useful EPs compared to λ=0). Let us note that two of
these patterns also contain benzene (lines 18 and 20). Moreover, these patterns,
which violate slightly the density constraint, are highly aromatic and from a
biodegradability point of view, aromatic compounds are among the most re-
calcitrant of the pollutants. These patterns have a high growth rate and this
result strengthens our hypothesis that the growth rate measure captures toxic
behavior. Furthermore, λ=20% enables to extract two new EPs containing the
chlorobenzene (lines 2, 4) and one pattern containing the fragment Clc(cc)ccc
(line 10). These patterns are of a great interest and they reinforce our previous
hypothesis of toxicophore.

Table 3b depicts the top25 EPs with λ=40%. As before, soft thresholds allow
to discover 6 new EPs containing benzene (cf. lines 7, 9, 14, 16, 19 and 20).
These patterns, which slightly violate the growth rate constraint, are highly aro-
matic and relatively dense and thus reinforce the hypothesis that the higher the
chemical density is, the stronger its chemical behavior. A new EP of particular
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Table 4. top25 Jumping Emerging Patterns (λ=50% and λ=60%)

(a) top25 JEP (first 11).
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λ = 50% # Solutions=3

1 253 24 35 87 ∞ 47 66 88 cc ccc OP

2 222 24 35 90 ∞ 45 66 77 cc ccc OPO

3 222 24 35 105 ∞ 45 66 77 cc ccc COP

λ = 60% # Solutions=457

1 174 24 35 47 59 77 ∞ 40 83 66 cc ccc cccc ccccc c1ccccc1
87 OP

2 174 24 35 47 59 87 ∞ 42 80 71 cc ccc cccc ccccc OP

3 172 24 35 47 77 87 ∞ 40 80 71 cc ccc cccc c1ccccc1 OP

4 171 24 35 47 59 76 ∞ 40 85 61 cc ccc cccc ccccc cccccc
77 87 c1ccccc1 OP

5 169 24 35 47 59 76 ∞ 40 83 64 cc ccc cccc ccccc cccccc
87 OP

6 169 24 35 47 76 77 ∞ 40 83 64 cc ccc cccc cccccc c1ccccc1
87 OP

7 168 24 35 47 87 ∞ 42 75 79 cc ccc cccc OP

8 167 24 35 47 76 87 ∞ 40 80 69 cc ccc cccc cccccc OP

9 167 24 35 59 77 87 ∞ 40 80 69 cc ccc ccccc c1ccccc1 OP

10 166 24 35 59 76 77 ∞ 40 83 63 cc ccc ccccc cccccc c1ccccc1
87 OP

11 162 24 35 59 76 87 ∞ 40 80 67 cc ccc ccccc cccccc OP

(b) top25 JEP (last 14).
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12 162 24 35 76 77 87 ∞ 40 80 67 cc ccc cccccc c1ccccc1 OP

13 161 24 35 59 87 ∞ 42 75 76 cc ccc ccccc OP

14 160 24 47 59 77 87 ∞ 40 80 66 cc cccc ccccc c1ccccc1 OP

15 159 24 35 77 87 ∞ 40 83 60 cc ccc c1ccccc1

16 159 24 47 59 76 77 ∞ 40 75 76 cc cccc ccccc cccccc c1ccccc1
87 OP

17 157 24 35 59 76 77 ∞ 38 83 60 cc ccc ccccc cccccc c1ccccc1
87 OP

18 157 24 35 47 59 77 ∞ 38 83 60 cc ccc ccccc cccccc c1ccccc1
90 OPO

19 156 24 35 47 76 77 ∞ 38 83 59 cc ccc cccc cccccc c1ccccc1
105 COP

20 156 24 35 47 59 76 ∞ 38 83 59 cc ccc cccc ccccc cccccc
105 COP

21 156 24 35 47 76 77 ∞ 38 83 59 cc ccc cccc cccccc c1ccccc1
90 OPO

22 156 24 35 47 59 76 ∞ 38 83 59 cc ccc cccc ccccc cccccc
90 OPO

23 155 24 47 76 77 87 ∞ 40 80 64 cc cccc cccccc c1ccccc1 OP

24 155 24 47 59 76 87 ∞ 40 80 64 cc cccc ccccc OP

25 155 24 35 47 59 105 ∞ 40 80 64 cc ccc cccc ccccc COP

interest to chemists is obtained: {nc}. This pattern is environmentally hazardous
since it is very toxic to aquatic species.

For the top50 EPs, soft thresholds with λ=20% (resp. 40%) allow to detect
2.25 (resp. 1.25) times more solutions containing the phenol ring. Furthermore,
λ=40% enables to extract 8 (resp. 3) new EPs containing benzene (resp. the
chlorobenzene). All these results confirm the benefit of using soft thresholds in
order to obtain novel chemical knowledge of a great interest.

5.5 Extracting Jumping Emerging Patterns

Our third experiment evaluates the character of toxicity carried by the chemical
fragments which occur only in chemicals classified H400 (i.e. high toxicity), the
so-called Jumping Emerging Patterns (JEPs) (cf. Definition 2). Table 4 shows
the top25 JEPs according to different values of λ. One can draw the following re-
marks: (i) Without soft threshold constraints, JEPs are not detected; (ii) With
λ=50% (resp. 60%), we get 3 (resp. 457) JEPs. Indeed, this kind of patterns
are less frequent, thus it is necessary to have a relatively high threshold viola-
tion; (iii) All patterns containing organo-phosphorus fragments have a growth
rate equal to +∞. It appears that the organo-phosphorus fragment is a gener-
alization of several Jumping Emerging Fragments (JEFs) and can be seen as a
kind of maximum common structure of these fragments; (iv) Among the top25
JEPs extracted with λ=60%, the most interesting patterns are those including a
benzene ring (c1ccccc1). Actually, the benzene ring is one of the most aromatic
molecular fragments. With λ=50%, the extracted JEPs contain subfragments of
benzene without complete rings. Thus, these JEPS are less relevant from a chem-
ical point of view compared to those mined with λ=60%. Again, these results
demonstrate the effectiveness and the contribution of soft threshold constraints



326 W. Ugarte et al.

to highlight relevant chemical structures, such as benzene rings compared to its
subfragments.

6 Related Work

There are few works in data mining to cope with the stringent aspect of the usual
constraint-based mining framework. Relaxation has been studied to provide soft
constraints with specific properties in order to be able to manage them by usual
constraint mining algorithms. In [5], regular expression constraints have been
relaxed into anti-monotonic constraints for mining significant sequences.

In the context of local patterns, [3] have proposed a generic framework using
semirings to express preferences between solutions. Each constraint has its own
measure of interest and the interest of a query is the aggregation of the interests
of all constraints composing the query. Given a query and a threshold value,
the goal is to find all local patterns whose interest satisfies this threshold value.
However, this approach relies on the following strong hypothesis: the interest of
a given query satisfies the threshold, if and only if, the interest of each constraint
satisfies the same threshold [3]. If the aggregation operator is performed using
the min operator (fuzzy semiring), the equivalence holds. However, for the sum
operator (weighted semiring) and the × operator (probabilistic semiring), it is
no longer the case. That is why the authors need to perform a post-processing
step to filter the set of effective solutions.

So, unlike [3], our approach preserves the equivalence without requiring a
post-processing step. Moreover, it can be applied on pattern sets and therefore
to local patterns.

7 Conclusion

In this paper, we have proposed a method to integrate soft threshold constraints
into the pattern discovery process by using works on constraints relaxation.
Then, by defining an interestingness measure on patterns, we have shown how
soft threshold constraints can be exploited for extracting the top-k patterns.
Finally, the relevance and the efficiency of our approach is highlighted through
a case study in chemoinformatics for discovering toxicophores. Experimental
results demonstrate the benefit of using soft threshold constraints in order to
obtain novel chemical knowledge of great interest such as the top-k patterns
or JEPs. As future work, we want to study the benefit of our approach on the
clustering task [2] and skylines that return points of interest not dominated by
other points with respect to a given set of criteria [4].
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