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Abstract. It is well known that local patterns are at the core of a lot of
knowledge which may be discovered from data. Nevertheless, use of local
patterns is limited by their huge number and computational costs. Sev-
eral approaches (e.g., condensed representations, pattern set discovery)
aim at selecting or grouping local patterns to provide a global view of
the data. In this paper, we propose the idea of global constraints to write
queries addressing global patterns as sets of local patterns. Usefulness of
global constraints is to take into account relationships between local pat-
terns, such relations expressing a user bias according to its expectation
(e.g., search of exceptions, top-k patterns). We think that global con-
straints are a powerful way to get meaningful patterns. We propose the
generic Approximate-and-Push approach to mine patterns under global
constraints and we give a method for the case of the top-k patterns w.r.t.
any measure. Experiments show its efficiency since it was not feasible to
mine such patterns beforehand.

Keywords: data mining, local patterns, constraint-based paradigm,
global constraints, top-k patterns.

1 Introduction

In current scientific, industrial or business areas, the critical need is not to gener-
ate data, but to derive knowledge from huge datasets produced at high through-
put. Extracting or mining knowledge from large amounts of data is at the core of
the Knowledge Discovery from Data task, often also named “data mining”. This
involves different challenges, such as designing efficient tools to tackle data and
the discovery of patterns of a potential user’s interest. The constraint-based pat-
tern mining framework is a powerful paradigm to discover new highly valuable
knowledge [16]. Constraints provide a focus on the most promising knowledge
by reducing the number of extracted patterns to those of a potential interest
given by the user. There are now generic approaches to discover local patterns
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under constraints [7, 20]ăand this issue is rather well-mastered, at least for the
data described by items (i.e., boolean attributes). A Dagstuhl seminar has been
devoted on the topic of local patterns in order to provide a clearer view of this
new field [15] and a Definition of local patterns is given in Section 2.1.

Nevertheless, even if the number of produced local patterns is reduced thanks
to the constraint, the output still remains too large for an individual and global
analysis performed by the end-user. The most significant patterns are lost among
too many trivial, noisy and redundant information. Many works propose meth-
ods to reduce the collection of patterns, like the so-called condensed representa-
tions [5] or the compression of the dataset by exploiting Minimum Description
Length Principle [19] but most of them are dedicated to the particular case of
frequent patterns (a pattern X is said frequent if the number of examples in
the database supporting X exceeds a given threshold). Recent approaches - pat-
tern teams [12], constraint-based pattern set mining [8] and selecting patterns
according to the added value of a new pattern given the currently selected pat-
terns [2] - aim at reducing the redundancy by selecting patterns from the initial
large set of patterns on the basis of their usefulness in the context of the other
selected patterns. Even if these approaches explicitly compare patterns between
them (as the global constraints, see Section 3), they are mainly based on the
reduction of the redundancy and they cannot take into account in a flexible way
a bias given by the user to direct the final set of patterns toward a specific aim
such as finding the best patterns according to an interestingness measure or the
search of exceptions. In this paper, we call global pattern a set of local patterns
satisfying a property involving several local patterns (cf. Section 2).

On the other hand, it should be a pity to consider the summarization of local
patterns only from the point of view of the redundancy. We think that local
patterns are also suitable to revisit classical data exploration tasks as for ex-
ample classification or clustering and more generally to produce global patterns
as models. Assuming that the user would like to produce a classifier based on
rules. A complete and correct constraint-based data mining method ensures to
produce a proper set of classification rules. It differs for instance from the deci-
sion trees technique where the attribute selection criterion ensures to pick the
best attribute at each node but it does not guarantee the best whole tree [4].
Obviously, having a proper set of classification rules does not straightforwardly
provide a relevant classifier. More generally, it is clear that moving from local
patterns to global patterns as models like classifiers is still a challenge. Studying
carefully the complementarity of the various pattern domains (e.g., clustering
and local pattern discovery, local pattern discovery as feature construction for
supervised classification) is needed.

This paper addresses this general issue by using the constraint paradigm. Our
first contribution is to propose the notion of global constraints as a flexible and
declarative way to design global patterns as sets of local patterns. This approach
enables the user to express a bias and discover richer global patterns. Second, we
provide the generic Approximate-and-Push approach to mine patterns satisfying
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global constraints. We give a method for mining the top-k patterns w.r.t. any
measure and we show its efficiency in practice.

This paper is organized as follows. Section 2 outlines basic definitions and
several examples of global patterns as set of local patterns. We will see that
the current techniques are specific to the kind of targeted global patterns. In
Section 3, we propose the notion of global constraints and we show how ităen-
ables us to address a lot of global patterns. We present in Section 4 our generic
Approximate-and-Push approach to mine patterns under global constraints and
the case of the top-k patterns w.r.t. any measure. In Section 5, we discuss of the
usefulness of our approach to design global patterns as models. Finally, Section 6
concludes.

2 Basic Definitions and Examples of Global Patterns

We give below basic definitions used among this paper. Then we sketch examples
of methods providing global patterns coming from local patterns.

2.1 Basic Definitions

Let I be a set of distinct literals called items, an itemset (also called pattern)
corresponds to a non-null subset of I. The language of patterns corresponds to
LI = 2I\∅. A transactional dataset D is a multi-set of patterns of LI usually
called transactions. For instance, Table 1 gives a transactional dataset D where
9 transactions t1, . . . , t9 are described by 6 items A, . . . , C2.

Table 1. Example of a transactional context D

D
Trans. Items

t1 A B C1

t2 A B C1

t3 C C1

t4 C C1

t5 C C1

t6 A B C D C2

t7 C D C2

t8 C C2

t9 D C2

Local patterns are regularities that hold for a particular part of the data. A
local pattern is of special interest if it exhibits a deviating behavior w.r.t. the
underlying global model of the data [11] because we are seeking for surprising
knowledge which deviates from the already known background model. But local
patterns can also be considered as fragmented and incomplete knowledge con-
veying some aspect of the data. As introduced in Section 1, a challenge is then
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to gather the pieces of the puzzle to turn global patterns, i.e., sets of patterns sat-
isfying a property involving several local patterns. Such global patterns provide
summarizations of the data.

Let X be a pattern. The constraint-based pattern mining framework aims at
discovering all the patterns of LI satisfying a given predicate q, named constraint,
and occurring in D. A well-known example is the frequency constraint focusing on
patterns having a frequency in the database exceeding a given minimal threshold
minfr > 0: freq(X) ≥ minfr. For instance, AB is a frequent pattern with
minfr = 3 because freq(AB) = 3. There are a lot of constraints to evaluate
the relevance of local patterns. Examples of various and powerful constraints
can be found in [16, 20]. We call local constraint such constraints because they
concern only one pattern contrary to the global constraints that we propose
in Section 3. The constraint paradigm also uses interestingness measures (the
frequency is an example) to select local patterns. Another example of measure
is the area of a pattern area(X): it corresponds to the frequency of the pattern
times its length (i.e., area(X) = freq(X)×count(X) where count(X) denotes the
cardinality of X). Previous examples are local constraints and Section 3 depicts
examples of global constraints. We will come-back on the area as an example of
an interestingness measure that can be used in the top-k global constraint (see
Section 3).

Mining patterns under constraints requires the exploration of the search space
depicted by LI . Unfortunately, this space is generally huge and thus, prun-
ing conditions are necessary. The property of monotonicity is well-used because
pruning conditions are straightforwardly deduced [14]. A constraint q is anti-
monotone w.r.t. the item specialization (resp. monotone) iff for all X ∈ LI
satisfying q, any subset (resp. superset) of X also satisfies q. For instance, the
minimal support constraint is anti-monotone. Whenever a pattern X is frequent,
any subset of X is also frequent.

2.2 Global Patterns as Sets of Local Patterns

This section gives examples of methods producing the sets of all patterns satis-
fying a property involving several local patterns. Have a look on characterization
rules which are an important issue in a lot of applications. The usefulness of the
simplest rules (i.e., rules having minimal premises) for this task is shown in [6].
Basically, given a bounded number of exceptions δ, a rule has a minimal premise
if any rule with a proper subset of its premise and less than δ exceptions does
not enable to conclude on the same class value (Section 3 gives a formal defi-
nition highlighting the comparison between two local patterns). Such rules are
inferred from a specific subset of patterns satisfying a property of δ-freeness [3].
Prototypes extracting the condensed representations of the δ-free patterns can
be updated to extract the correct and complete collection of characterization
rules as defined above [6]. Unfortunately, this approach cannot be extended if
we are interested in other kinds of characterization rules.

The discovery of exception rules from a data set without domain-specific infor-
mation is also of a great interest [22]. An exception rule is defined as a deviational
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pattern to a strong rule and the interest of a rule is evaluated according to an-
other rule. Again, the comparison between rules means that these exception rules
are not local patterns. Suzuki proposes a method based on sound pruning and
probabilistic estimation [22] to extract all the exception rules. But, as previously,
this approach is devoted to this kind of patterns.

Another example is the top-k patterns [10]. These patterns are the k patterns
optimizing an interestingness measure m (e.g., frequency, area). The collection
of the top-k patterns is concise and gathers the most relevant patterns according
to m. It can be seen as a global pattern. Discovering the top-k patterns opti-
mizing a measure m becomes difficult as soon as m has no suitable property like
anti-monotonicity. Naive post-processing approaches extract in a first step all
patterns whose the value of m exceeds a threshold, then the k patterns optimiz-
ing m are selected. But, in practice, the choice of the threshold is too subtle. A
too high threshold may lead to miss patterns satisfying the top-k constraint, a
too small may generate thousands of patterns giving intractable computations.
For instance, a naive method for mining the top-k patterns w.r.t. area requires
to extract all present patterns because even patterns whose frequency value is 1
may satisfy the area constraint. A branch-and-bound algorithm for top-k pat-
terns is proposed in [8], but only few measures (stemming from upper-boundable
constraints) are tackled.

In the next section, we show that all of these global patterns (and many oth-
ers) can be easily expressed with global constraints. In Section 4.2, we provide
a method belonging to our generic Approximate-and-Push approach which effi-
ciently mines the top-k patterns w.r.t. any measure (whereas the works on top-k
patterns in the literature are limited to the frequency measure [10] and specific
forms of the patterns).

3 Global Constraints for Mining Global Patterns

We propose in this section the notion of global constraint which formalizes the
building of the global patterns previously introduced. Global constraints con-
sider simultaneously at least two patterns contrary to local constraints which
are checked individually on each pattern (see Section 2.1). By comparing several
patterns, global characteristics from the database can be revealed.

Definition 1 (Global constraint). A constraint q is said global if several pat-
terns have to be compared to check if q is satisfied or not.

A global constraint satisfaction is based on information coming from at least
two patterns. This point is highlighted in the examples given below by the two
patterns X and Y . For instance, several constraints (e.g., freeness, characteri-
zation rules, exception rules) require to check properties of the subsets Y of X .
Peak constraint compares two neighbor patterns and top-k any pair of patterns.
This definition of global constraints enables to write properties both minimiz-
ing the redundancy (e.g., freeness, characterization rules) and directed toward
a bias given by the user (e.g., minimal premise with the characterization rules,
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unexpected information with the exception rules, exceptional behavior with the
peak constraint).

We present now a non-exhaustive list of global constraints illustrating Defini-
tion 1 in the context of itemset mining. All the examples given in Section 2.2 are
written with the formalism of the global constraints. Some of them are very well-
known, like freeness or closedness. We also propose the peak constraint which
highlights an exceptional behavior of a pattern with respect to its neighbors.

– Condensed representations (freeness and closedness): A free (resp.
closed) pattern is a minimal (resp. the maximal) pattern of its equivalence
class of frequency [3, 17] (the frequency has been introduced in Section 2.1).
This kind of patterns is useful to design condensed representations or to de-
rive association rules. Freeness and closedness require to check the frequency
of X with respect to the frequencies of its subsets.

freeness(X)≡
{

true if ∀Y ∈ LI such that Y ⊂X, one have freq(X) < freq(Y )
false otherwise

closedness(X)≡
{

true if ∀Y ∈LI such that X ⊂Y , one have freq(X)>freq(Y )
false otherwise

For instance, AC satisfies the freeness constraint in dataset D given by
Table 1 but not ABC since freq(ABC) = freq(AB). Dually, ABCD satisfies
the closedness constraint but not ABC (freq(ABC) = freq(ABCD)).

– Characterization rules: A formulation of characterization rules is given
in [6]. It can be defined by the following global constraint:

characterization(X → c) ≡

⎧⎨
⎩

true if ∀Y ∈ LI such that Y ⊂ X, one have
X → c ∧ ¬(Y → c)

false otherwise

where X → c denotes a rule with freq(X → c) ≥ γ and freq(X → ¬c) ≤ δ.
It means that X → c is a rule with a minimal premise to conclude to c
with lower than δ exceptions. For instance, with γ = 1 and δ = 1, the rule
A → C1 is minimal and has only one exception in dataset D (see Table 1).
Then, A → C1 satisfies the constraint characterization.

– Exceptions: Suzuki [22] defines exception rules which isolate unexpected
information as the following set or rules (I is an item):

exception(X → ¬I) ≡

⎧⎨
⎩

true if ∃Y ∈ LI such that Y ⊂ X, one have
X\Y → I ∧ X → ¬I ∧ Y 	→ ¬I

false otherwise

The rule X → ¬I is an exception rule since usually if X\Y then I and if Y
then not frequently ¬I. Let us illustrate this notion by assuming that a rule
X → Y holds iff at least 2/3 of transactions containing X also contains Y .
Following our running example, AC → ¬C1 is an exception rule because we
jointly have A → C1 and C �→ ¬C1.
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– Top-k constraint: Let k > 0 be an integer and m : LI → � be a measure
(e.g., frequency [10]). The top-k constraint w.r.t m are the k best patterns
according to m and it equals to:

topk,m(X) ≡ |{Y ∈ LI |Y 	= X ∧ m(Y ) > m(X)}| < k

Typically, by ignoring class values C1 and C2 in dataset D, the top-2 patterns
according to the area measure are C (area(C) = 6) and AB (area(AB) = 6).
Indeed, all the other patterns have an area lower than 6.

– Peak constraint: A peak pattern is a pattern whose neighbors have a value
for a measure m lower than a threshold. It means that a peak pattern has
an exceptional behavior compared to its neighbors. Let m : LI → � be a
measure, d be a distance (e.g., d(X, Y ) = |X\Y | + |Y \X |), δ be an integer
and ρ be a real, one have:

peak(X)≡
{

true if ∀Y ∈LI such that d(X,Y )<δ, one have m(X) ≥ ρ × m(Y )
false otherwise

For instance, according to Table 1 and not considering C1 and C2, the pattern
AB is a peak with δ = 1 and ρ = 1.5. More precisily, the area of AB
(= 6) exeeds those of all its 4 neighbors (i.e., area(A) = 3, area(B) = 3,
area(ABC) = 3 and area(ABD) = 3 and 3 × ρ ≤ 6).

Among others, all examples of global patterns given in Section 2.2 can be
straightforwardly expressed with global constraints. We think that this unified
approach brought by the global constraints improves the understandability of
the global patterns. Furthermore, this approach enables to easily design new
global patterns like peaks, but many other examples can be addressed.

Global constraints provide a reduced collection of patterns forming a cover-
age or gathering the best ones according to a bias or a criterion expressing the
interest of the user. The covering constraints synthesize the whole set of local
patterns by deleting redundancies: freeness, closedness, characterization rules.
The optimizing constraints optimize a given criterion over some patterns (i.e.,
exceptions, peak constraint) or over all the patterns (i.e., the topk,m constraint).
There is no strict border between these two categories: for instance, a charac-
terization rule also satisfies an optimizing constraint, i.e., a maximal number of
exceptions.

4 The Approximate-and-Push Approach and the Case of
the Top-k Patterns

This section proposes the generic Approximate-and-Push approach for mining
patterns satisfying global constraints. We start by giving the key ideas of the
approach and then we show how it performs in the case of the top-k patterns.
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4.1 Overview of the Approximate-and-Push Approach

Basically, the idea is to automatically deduce local constraints from a global
constraint. These local constraints are relaxations of the global one and can be
pushed in the mining step. They are dynamically refined during the process to be
more and more efficient. As suggested by its name, the Approximate-and-Push
approach is divided in two steps which are iteratively repeated.

Approximate. This step provides a collection of candidate patterns which is an
approximation of the final collection of patterns satisfying the global constraint.
The initialization of the method has to guarantee that this approximation ensures
to mine all patterns satisfying the global constraint. In the case of the top-
k patterns, we will see in the next section that preserving the k best already
extracted patterns is enough. Then, at each approximate step, a pattern X is
tested to know if it has to be included in the collection of candidate patterns.
X is added in the collection if it may satisfy the global constraint with regard
to the other patterns already present in the collection. Candidate patterns of
the collection are removed when a new tested pattern ensures that they cannot
satisfy the global constraint.

Push. The aim of this step is to deduce from the global constraint, pruning
conditions of the search space which benefit from the characteristics of the ap-
proximation, i.e., the collection of candidate patterns. Pruning conditions may
be relaxations to get suitable properties like (anti-)monotonicity which are ef-
ficiently pushed by usual pattern mining algorithms. The next section details
this process in the case of the top-k patterns. Moreover, when new patterns
enter in the collection of candidate patterns, these pruning conditions become
more efficient. This is clearly the main interest of the iterative process of the
Approximate-and-Push approach.

The Approximate-and-Push approach can be performed with any pattern min-
ing algorithm, provided that the pruning conditions which are inferred are useful
for the selected algorithm. Furthermore, the Approximate-and-Push approach is
easily extendable to other languages (sequences, trees, etc). In the next sec-
tion, we show how an Apriori-like algorithm can be efficiently reused by the
Approximate-and-Push approach to mine the top-k patterns w.r.t. any measure.

4.2 Mining the Top-k Patterns w.r.t. a Measure

This section shows how to push the topk,m constraint into the mining step thanks
to the Approximate-and-Push approach. Besides its efficiency, one of the original
features of our method is to deal with measures without properties of (anti)-
monotonicity (i.e., such measures do not provide efficient pruning conditions for
usual algorithms to mine patterns satisfying the constraint). To the best of our
knowledge, our method is the first one to mine the top-k patterns w.r.t. any
measure.
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Principles of the Method. The definition of topk,m given in Section 3 does
not straightforwardly provide a local constraint which can be pushed by an
usual pattern mining algorithm. We reformulate the topk,m constraint to get a
relevant local constraint. First, we introduce the threshold ρk,m corresponding
to min{m(X)|X ∈ LI ∧ topk,m(X)}. Then, we can rewrite the topk,m constraint
as topk,m(X) ≡ m(X) ≥ ρk,m. This last constraint is still a global one because
the threshold ρk,m implicitly implies comparisons between patterns. But, fixing
this threshold makes possible the definition of relevant local constraints as we
will see below. The key idea is to start by fixing an arbitrary threshold, then it
will be refined to improve the efficiency of the pruning conditions coming from
the local constraint thanks to the iterative process of the Approximate-and-Push
approach.

Approximating the top-k patterns. As already said, this step preserves the ap-
proximation which is the k patterns Cand optimizing the measure m from the
patterns already mined. This ensures the correctness and the completeness of
the result at the end of the scanning of the search space. We define an adding
threshold ρ to decide if an applicant pattern has to be added or not in the col-
lection Cand (the following definition assumes that m has to be maximized, if
m has to be minimized, it is enough to change the sign of m).

ρ =
{

−∞, if |Cand| < k
minX∈Cand m(X), otherwise

An applicant pattern is added to Cand if and only if its measure m is greater
than or equal to the adding threshold ρ. At the beginning, there is a filling phase
(i.e., ρ = −∞) and all the mined patterns are added until Cand has k candidate
patterns. Thereafter, the addition of an applicant pattern depends on ρ which
provides the minimum value of m of the k best current patterns. A pattern
X is deleted from Cand when k other patterns of Cand have a better measure
than m(X). The great interest of this approach is that the adding threshold will
increase (ρk,m is its optimal value) according to the updating of the Cand leading
to more and more powerful pruning conditions in the push step.

Table 2. The top-2 pattern w.r.t the area with Apriori algorithm

Level 1
Pattern Cand ρ

A (3) A −∞
B (3) A, B 3
C (6) C, A, B 3
D (3) C, A, B, D 3

Level 2
Pattern Cand ρ

AB (6) C, AB 6
AC (2) C, AB 6
AD (2) C, AB 6
BC (2) C, AB 6
BD (2) C, AB 6
CD (4) C, AB 6
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Table 2 depicts the modifications of candidate patterns Cand during the min-
ing of the constraint top2,area with a levelwise approach (as performed by Apri-

ori [1]) in the transactional context provided by Table 1 (ignoring class values
C1 and C2). The levelwise algorithm generates two successive sets of applicant
patterns. For each level, patterns whose area is greater than ρ (bold patterns)
enter in the collection of candidate patterns. The value of area is specified be-
tween brackets in the left column and the candidate patterns are gathered in
the central column. As explained above, the threshold ρ (the right column) is
progressively adjusted. While the number of patterns of Cand is less than k, the
threshold ρ remains −∞. After, ρ corresponds to the minimal area satisfying by
at least one pattern of Cand. The pattern A is not excluded when B enters in
the collection because its area equals ρ. On the contrary, A, B and D are deleted
when the pattern AB arrives in Cand because then ρ = 6. At the end of the last
level, Cand contains exactly C and AB which are the two patterns satisfying
top2,area (i.e., the two patterns having the best area).

Pushing the approximation. Suitable pruning conditions can be inferred from
the collection of candidate patterns Cand and the adding threshold. As Cand
preserves the topk,m constraint and any pattern in Cand has a value of m greater
than or equal to ρ, we can deduce that a pattern X must satisfy the local
constraint m(X) ≥ ρ to be introduced into Cand. Unfortunately, this constraint
does not straightforwardly provide suitable pruning conditions. For instance, if
we come back to the area measure, area(X) ≥ ρ does not satisfy (anti-)monotone
properties. For that purpose, we propose to relax the constraint m(X) ≥ ρ by
a relaxation m′(X) ≥ ρ satisfying the two following conditions: m′(X) ≥ ρ is
anti-monotone (condition C1) and ∀X , m(X) ≥ ρ ⇒ m′(X) ≥ ρ (condition C2).
Condition C2 ensures the completeness of the mining process. Finding an anti-
monotone relaxation m′(X) ≥ ρ is not a trivial task. An automated and generic
method taking into account any measure, which can be decomposed according to
primitives, is given in [21]. Let us illustrate this step w.r.t. the area measure. If
the k candidate patterns in the approximation have an area higher or equal to A
and the size of the longest transaction in the database is L (so a pattern cannot
be longer than L), we can deduce that the frequency of any top-k pattern X w.r.t.
the area measure must be higher or equal to A

L because area(X) = freq(X) ×
count(X). The key point is that we get a pruning condition (i.e., freq(X) < A

L )
which corresponds to an anti-monotone constraint and thus can be efficiently
pushed [16]. In other words, we have deduced from the global constraint a local
constraint (here, freq(X) ≥ A

L ) leading to a pruning condition for the usual level-
wise mining algorithms. Moreover, when new patterns enter in the collection
of candidate patterns, the adding threshold can only increase (following our
example, L is fixed and A can only increase) and this pruning condition becomes
more and more efficient. Experiments described below demonstrate the practical
efficiency of this process.

Let us come back on our running example of top-2 patterns w.r.t area given
by Table 2. The used anti-monotone relaxation is freq(X) ≥ ρ/L (here L = 4
because the size of the longest transaction is 4). At the end of the first level,
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ρ = 3 and the relaxation freq(X) ≥ 3/4 eliminates no pattern. So, all the
patterns containing two items and present in the context D are generated. On
the contrary, at the end of the second level, ρ = 6 and the relaxation becomes
freq(X) ≥ 6/4. For the level 3, the generated patterns must have a frequency
greater than or equal to 2 (none pattern has a sufficient frequency). The mining
process stops at level 3 because no more pattern can be generated. Finally, the
Approximate-and-Push approach avoids the generation of 4 patterns having a
length of 3 and 1 pattern of length 4.

4.3 Experiments

The aim of the experiments is to show and quantify the efficiency of our method.
Recalling that mining topk,m patterns w.r.t. any measure was not feasible before-
hand, except by using a rather naive post-processing technique (topk,m patterns
are filtered in a second time). Furthermore, as explained below, topk,m patterns
may be missed by this technique!

In the following, Approximate-and-Push means our method described
above and using an Apriori-like algorithm to push the anti-monotone constraint
automatically deduced. As there is no other generic approaches in the literature,
we think that demonstrating the feasibility of mining the top-k patterns w.r.t.
measures like area (which do not check good properties like (anti-)monotonicty)
is itself a first interesting result of these experiments. Nevertheless, to go further
and better understand the behavior and the efficiency of Approximate-and-Push,
we compare it with two other specific strategies also based on Apriori algorithm:

– Optimal: this strategy exploits the optimal anti-monotone relaxation of
m(X) ≥ ρk,m. We fix for the threshold ρk,m the value optimizing the prun-
ing condition without loss of top-k patterns. This is ideal but unfeasible
in practice because this threshold cannot be known by the user. Neverthe-
less, the interest of this experiment is this strategy enables us to compare
Approximate-and-Push w.r.t. the optimal situation pushing the constraint.

– Post-processing: until now, this is the single strategy to mine the top-k
patterns w.r.t. measures like area, even if such an approach is not safe as we
show below. In a first step, all patterns having a frequency higher than 10%
are mined. Then, the k best patterns w.r.t. the measure are selected. The
frequency threshold (here, 10%) is fixed by the user. In practice, the user
makes a trade-off between tractability and completeness (avoid missing top-k
patterns) according to his intuition. But, this method cannot be used safely.
For instance, it can happen that a long pattern having a frequency below
the frequency threshold (consequently not mining) has an area higher than
a shorter and frequent pattern. Let us recall that Approximate-and-Push is
sound and complete.

We use two datasets (mushroom and letter 1) and two measures, the fre-
quency and the area. We also performed experiments with other measures and
1 www.ics.uci.edu/~mlearn/MLRepository.html

www.ics.uci.edu/~mlearn/MLRepository.html


Discovering Knowledge from Local Patterns with Global Constraints 1253

datasets, these experiments gave similar results. For each dataset, we mine the
top-k patterns w.r.t these measures. All the experiments are done with the same
Apriori implementation and we can compare the different running-times. Ex-
periments were conducted on an Xeon 2.2 GHz with 3GB of RAM memory run-
ning the Linux system. Figure 1 reports the extraction running times according
to k, i.e., the number of desired patterns.
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Fig. 1. Running-times for mining the top-k patterns

The Post-processing strategy has a specific behavior because its running-time
is a constant which does not depend on the value k for a experiment. It suffers
from two main drawbacks. When k is small, its running time is much longer than
the other ones. More serious, this strategy fails for some values of k because it
misses top-k patterns. In these cases, curves in Figure 1 are interrupted. With
the area measure on letter, this strategy systematically returns false top-k
patterns for any k! That it is why the curve for the Post-processing strategy is
not plotted in this figure. These results recall that the Post-processing strategy
is not safe.

Figure 1 indicates that the shapes of the Approximate-and-Push and Optimal
curves are similar. The higher k is, the longer the running-time. Obviously, the
Optimal strategy is better than the Approximate-and-Push strategy. But recall-
ing that the Optimal strategy cannot be used in practice because it is impossible
to guess the suitable threshold which has to be used to achieve the optimality.
A major lesson is that the Approximate-and-Push curve is not so far from the
Optimal curve (see for instance results on letter). Approximate-and-Push is es-
pecially efficient (and very close to the optimality) when k is small. This is due
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to a fast filling phase of candidate patterns which provides quickly an efficient
local constraint. This result is important because the user often fixes low values
for k in order to obtain a small and analyzable output.

5 Future Issue: Designing Global Patterns as Models

A lot of global models which are the expected results of a data mining process can
come from global patterns. Intuitively, we can define a model as a generalization
of global patterns extracted from an application domain. A typical example is the
associative classification. This technique proposes the integration of association
rule mining and classification [13]. As the number of potential classification rules
is very large, pruning techniques are used to generalize the information conveyed
by the rules and get a well-suited classifier on new examples. Rules which are
redundant from a functional point of view or may cause incorrect classification
are deleted. Pruning is usually applied as a post-processing step on the extracted
rules by using statistical parameters such as support, confidence and chi-square
test. A more recent approach finds the best k correlated association rules for
classification by using a measure which has suitable pruning properties [24].
A common characteristic of all these methods is to use heuristics techniques to
select the rules from a complete collection of local patterns to produce a classifier.

Associations, like the frequent patterns, are also at the core of clustering
works [23]. For instance, Ecclat [9] is based on frequent closed patterns and has
the originality to enable a slight overlapping between clusters. A global pattern
produced by Ecclat is performed by a greedy method in which the interest of
a cluster is evaluated according to an interestingness measure.

Interestingly, global patterns can capture the joint effect of local patterns. The
co-classification is a way of conceptual clustering and provides a limited collection
of bi-clusters. These bi-clusters are linked for both objects and attribute-value
pairs. In [18], the authors propose a generic framework for co-classification. Its
great interest is that the bi-partition comes from a reconstruction of the objects
and attributes defining the local patterns: the bi-clusters of the final bi-partition
(i.e., a global pattern) are not necessary elements of the initial set of the local
patterns. Nevertheless, a distance between the bi-sets which are at the origin of
the bi-clusters has to be chosen.

We see that there are several techniques to infer global patterns and models
from local patterns. Unfortunately, combinations of local patterns are ad hoc
to a specific goal and often use heuristics or parameters which have to be set
by the user. That is why the question of how to turn large collections of local
patterns into global models deserves attention. We think that global constraints
enable us to significantly go further in this direction by providing appropriate
sets of patterns easier to manage than the local patterns currently used. Indeed,
patterns addressing by global constraints reveal relationships and a global struc-
ture inside the data, they are noticeably less numerous and they can be oriented
toward a bias given by the user. We think that global constraints enable us to
get a sound basis of patterns to design models.
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6 Conclusion

We think that designing and discovering global patterns and models are crucial
goals for the end-users. In this paper, we have proposed the notion of global
constraints to address this general issue. By comparing local patterns between
them, global constraints take into account relationships in the data. We have
shown that global constraints are a flexible and declarative way to define a lot
of global patterns (e.g., condensed representations, exceptions, top-k patterns,
characterization rules). This approach also enables the user to express a bias and
discover meaningful global patterns. In the literature, only few global patterns
can be mined and only by using dedicated algorithms mainly relying on anti-
monotone pruning. In this paper, we have proposed the generic Approximate-
and-Push approach and we have given an efficient method for mining the top-k
patterns w.r.t. a measure.

In the future, we would like to perform further experiments with other global
constraints using the Approximate-and-Push approach. It would also be interest-
ing to evaluate the quality of such new discovered patterns in real-world applica-
tions. Furthermore, a promising open avenue is to design high-level constraints
to directly build global models, it would avoid the choice of heuristics, as it is
the case in the current methods.
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