
Combining CSP and Constraint-Based Mining

for Pattern Discovery

Mehdi Khiari, Patrice Boizumault, and Bruno Crémilleux

GREYC, Université de Caen Basse-Normandie, Campus Côte de Nacre,
F-14032 Caen Cedex, France

{Forename.Surname}@info.unicaen.fr

Abstract. A well-known limitation of a lot of data mining methods is
the huge number of patterns which are discovered: these large outputs
hamper the individual and global analysis performed by the end-users
of data. That is why discovering patterns of higher level is an active
research field. In this paper, we investigate the relationship between lo-
cal constraint-based mining and constraint satisfaction problems and we
propose an approach to model and mine patterns combining several local
patterns, i.e., patterns defined by n-ary constraints. The user specifies
a set of n-ary constraints and a constraint solver generates the whole
set of solutions. Our approach takes benefit from the recent progress on
mining local patterns by pushing with a solver on local patterns all local
constraints which can be inferred from the n-ary ones. This approach
enables us to model in a flexible way any set of constraints combining
several local patterns. Experiments show the feasibility of our approach.

1 Introduction

In current scientific, industrial or business areas, the critical need is not to gener-
ate data, but to derive knowledge from huge datasets produced at high through-
put. Extracting or discovering knowledge from large amounts of data is at the
core of the Knowledge Discovery in Databases task, often also named “data
mining”. This involves different challenges, such as designing efficient tools to
tackle data and the discovery of patterns of a potential user’s interest. There is
a large range of methods to discover the patterns but it is well-known that the
“pattern flooding which follows data flooding” is an unfortunate consequence in
exploratory Knowledge Discovery in Databases processes and the most signifi-
cant patterns are lost among too much trivial, noisy and redundant information.

Many works propose methods to reduce the collection of patterns, such as the
constraint-based paradigm [23], the pattern set discovery approach [9,17], the
so-called condensed representations [5] as well as the compression of the dataset
by exploiting the Minimum Description Length Principle [25]. The constraint-
based pattern mining framework is a powerful paradigm to discover new highly
valuable knowledge [23]. Constraints provide a focus on the most promising
knowledge by reducing the number of extracted patterns to those of potential
interest for user. There are now generic approaches to discover local patterns

D. Taniar et al. (Eds.): ICCSA 2010, Part II, LNCS 6017, pp. 432–447, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Combining CSP and Constraint-Based Mining for Pattern Discovery 433

(cf. Section 2.1) under constraints [8,26] and this issue is rather well-mastered,
at least for data described by items (i.e., boolean attributes). We call local con-
straints the constraints addressing local patterns. Here, locality refers to the fact
that checking whether a pattern satisfies or not a constraint can be performed
independently of the other patterns holding in the data. Nevertheless, even if
the number of produced local patterns is reduced thanks to the constraint, the
output still remains too large for individual and global analysis by the end-user.

On the other hand, the interest of a pattern also depends on the other patterns
which are mined. A lot of patterns which are expected by the user (cf. Section 2.2)
or models such as classifiers or clustering require to consider simultaneously
several patterns to combine the fragmented information conveyed by the local
patterns. Local constraints, by considering only one pattern, are insufficient to
define and discover such higher patterns. There are few attempts on particular
cases by using devoted methods [28,18] but there is no generic approach. That is
why we claim that discovering patterns under constraints involving comparisons
between local patterns is a major issue. In the following of this paper, we call
n-ary constraints such constraints.

Mining patterns under local constraints requires the exploration of a large
search space, even in the case of the simplest patterns, i.e., data described by
items. Obviously, mining patterns under n-ary constraints is even harder be-
cause we have to take into account and compare the solutions satisfying each
pattern involved in a n-ary constraint. In this paper, we investigate the rela-
tionship between constraint-based mining and constraint programming and we
propose an approach to model and mine patterns under n-ary constraints. As
Constraint Satisfaction Problem (CSP) has the ability to define constraints on
several variables [1], it is a natural way to model n-ary constraints. We show that
each pattern of a n-ary constraint can be assimilated to a variable in the CSP
framework. The great advantage of this modeling is its flexibility, it enables us to
define a large broad of n-ary constraints. Basically, with our approach, the user
specifies the model, that is, the set of n-ary constraints which has to be satis-
fied, and a constraint solver generates the correct and complete set of solutions.
The CSP community has developed several efficient constraint solvers that we
can reuse and the resolution can be performed at the level of this global mod-
eling. But we think that it would be a pity not to take benefit from the recent
progress on mining local patterns. That is why a key point of our approach is to
divide a n-ary constraint in two parts, i.e., a set of local constraints Cloc which is
solved by a solver on local patterns and a set of n-ary constraints Cn−ary which
is solved by a CSP solver (cf. Section 4 for more details). We claim that is this
combination between the local and n-ary levels which enables us the discovery
of patterns under n-ary constraints. In other words, the contribution of this pa-
per is to propose an approach joining local constraint mining and set constraint
programming in order to model n-ary constraints and discover patterns under
such constraints. More generally, the paper investigates the relationship between
constraint-based mining and set constraint programming.

434 M. Khiari, P. Boizumault, and B. Crémilleux

This paper is organized as follows. Section 2 sketches definitions and presents
the problem statement. The background on pattern discovery and set constraint
programming is given in Section 3. We propose our approach to model and mine
patterns under n-ary constraints in Section 4. Section 5 details experiments and
deals with a discussion and research issues related to our approach.

2 Definitions and Motivations

Below we give definitions used in the paper and the context and motivations.

2.1 Definitions

Let I be a set of distinct literals called items, an itemset (or pattern) is a non-null
subset of I. The language of itemsets corresponds to LI = 2I\∅. A transactional
dataset is a multi-set of itemsets of LI . Each itemset, usually called transaction
or object, is a database entry. For instance, Table 1 gives a transactional dataset r
where 9 objects o1, . . . , o9 are described by 6 items A, . . . , c2.

Table 1. Example of a transactional context r

Trans. Items

o1 A B c1

o2 A B c1

o3 C c1

o4 C c1

o5 C c1

o6 A B C D c2

o7 C D c2

o8 C c2

o9 D c2

Let X be a local pattern. Pattern mining aims at discovering information
from all the patterns or a subset of LI . More precise, constraint-based mining
task selects all the itemsets of LI present in r and satisfying a predicate which is
named constraint. Local patterns are regularities that hold for a particular part
of the data. A local pattern is of special interest if it exhibits a deviating behavior
w.r.t. the underlying global model of the data [14] because we are seeking for
surprising knowledge which deviates from the already known background model.
There are a lot of constraints to evaluate the relevance of local patterns. A well-
known example is the frequency constraint which focuses on patterns having a
frequency in the database exceeding a given minimal threshold γ > 0: freq(X) ≥
γ. Many works [23] replace the frequency by other interestingness measures to
evaluate the relevance of patterns such as the area of a pattern (area(X) is
the product of the frequency of the pattern times its length, i.e., area(X) =
freq(X) × count(X) where count(X) denotes the cardinality of X).

Combining CSP and Constraint-Based Mining for Pattern Discovery 435

In practice, the user is often interested in discovering more complex patterns
such as the simplest rules in the classification task based on associations [30],
pairs of exception rules [28] which may reveal global characteristics from the
database. The definition of such patterns relies on properties involving several
local patterns [6]. These patterns are formalized by the notion of n-ary con-
straint :

Definition 1 (n-ary constraint). A constraint q is said n-ary if several local
patterns have to be compared to check if q is satisfied or not.

The next section provides more precise examples of n-ary constraints.

2.2 Context and Motivations

N-ary constraints are very useful to design a lot of patterns requested by the
users. For instance, the discovery of exception rules from a data set without
domain-specific information is of a great interest [28]. An exception rule is defined
as a deviational pattern to a strong rule and the interest of an exception rule is
evaluated according to another rule. The comparison between rules means that
these exception rules are not local patterns. More formally, an exception rule is
defined within the context of a pair of rules as follows (I is an item, for instance
a class value, X and Y are local patterns):

exception(X → ¬I) ≡
⎧
⎨
⎩

true if ∃Y ∈ LI such that Y ⊂ X, one have
(X\Y → I) ∧ (X → ¬I)

false otherwise

Such a pair of rules is composed of a common sense rule X\Y → I (the
term “common sense rule” represents a user-given belief) and an exception
rule X → ¬I since usually if X\Y then I. The exception rule isolates unex-
pected information. This definition assumes that the common sense rule has
a high frequency and a rather high confidence and the exception rule has a
low frequency and a very high confidence (the confidence of a rule X → Y is
freq(X ∪Y)/freq(X)). Assuming that a rule X → Y holds iff at least 2/3 of the
transactions containing X also contains Y , the rule AC → ¬c1 is an exception
rule in our running example (cf. Table 1) because we jointly have A → c1 and
AC → ¬c1. Note that Suzuki proposes a method based on sound pruning and
probabilistic estimation [28] to extract the exception rules. Nevertheless, this
method is devoted to this kind of patterns.

In the context of genomics, local patterns defined by groups of genes and sat-
isfying the area constraint previously introduced above are at the core of the
discovery of synexpression groups [15]. Nevertheless, in noisy data such as tran-
scriptomic data, the search of fault-tolerant patterns is very useful to cope with
the intrinsic uncertainty embedded in the data [3]. N-ary constraints are a way
to design such fault-tolerant patterns: larger sets of genes with few exceptions
are expressed by the union of several local patterns satisfying an area constraint

436 M. Khiari, P. Boizumault, and B. Crémilleux

and having a large overlapping between them. From two local patterns, it cor-
responds to the following n-ary constraint: area(X) > minarea ∧ area(Y) >
minarea ∧ (area(X ∩ Y) > α × minarea) where minarea denotes the minimal
area and α is a threshold given by the user to fix the minimal overlapping be-
tween the local patterns. The set of n-ary constraints can also be extended by
the use of the universal quantifier (see Section 6).

Section 4 presents our approach to model patterns satisfying such n-ary con-
straints and how we combine local constraint mining and set constraint pro-
gramming to extract these patterns.

3 Background: Related Works and Set CSP

3.1 Local Patterns and Pattern Sets Discovery

As said in the introduction, there are a lot of works to discover local patterns un-
der constraints. A key issue of these works is the use of the property of monotonic-
ity because pruning conditions are straightforwardly deduced [21]. A constraint
q is anti-monotone w.r.t. the item specialization iff for all X ∈ LI satisfying q,
any subset of X also satisfies q. In this paper, we use the Music-dfs1 prototype
because it offers a set of syntactic and aggregate primitives to specify a broad
spectrum of constraints in a flexible way [27]. Music-dfs mines soundly and
completely all the patterns satisfying a given set of input local constraints. The
efficiency of Music-dfs lies in its depth-first search strategy and a safe pruning
of the pattern space exploiting the anti-monotonicity property to push the local
constraints as early as possible. The pruning conditions are based on intervals
representing several local patterns. The local patterns satisfying all the local
constraints are provided in a condensed representation made of intervals (each
interval represents a set of patterns satisfying the constraint and each pattern
appears in only one interval). The lower bound of an interval is a prefix-free
pattern and its upper bound is the prefix-closure of the lower bound [27].

There are also other approaches to combine local patterns. Recent approaches
- pattern teams [17], constraint-based pattern set mining [9] and selecting pat-
terns according to the added value of a new pattern given the currently selected
patterns [4] - aim at reducing the redundancy by selecting patterns from the
initial large set of local patterns on the basis of their usefulness in the context of
the other selected patterns. Even if these approaches explicitly compare patterns
between them, they are mainly based on the reduction of the redundancy or spe-
cific aims such as classification processes. We think that n-ary constraints are a
flexible way to take into account a bias given by the user to direct the final set
of patterns toward a specific aim such as the search of exceptions. General data
mining frameworks based on the notion of local patterns to design global models
are presented in [16,13]. These frameworks help to analyze and improve current
methods in the area. In our approach (cf. Section 4), we show the interest of the
set constraint programming in this general issue of combining local patterns.
1 http://www.info.univ-tours.fr/~soulet/music-dfs/music-dfs.html

http://www.info.univ-tours.fr/~soulet/music-dfs/music-dfs.html

Combining CSP and Constraint-Based Mining for Pattern Discovery 437

Constraint programming is a powerful declarative paradigm for solving diffi-
cult combinatorial problems. In a constraint programming approach, one spec-
ifies constraints on acceptable solutions and search is used to find a solution
that satisfies the constraints. A first approach using Constraint Programming
for itemset mining has been proposed in [7]. In this work, constraints such as
frequency, closedness, maximality, and constraints that are monotonic or anti-
monotonic or variations of these constraints are modeled using 0/1 Linear Pro-
gramming. Then patterns satisfying these constraints are obtained by using the
constraint solver Gecode [11]. This work presents in a unified framework a large
set of patterns but does not address patterns modeled by relationships between
several local patterns as those described in Section 2. Recently, this work has
been extended in order to find correlated patterns (i.e., patterns having the
highest score w.r.t. a correlation measure) [24].

3.2 Set CSP

Formally a Constraint Satisfaction Problem (CSP) is a 3-uple (X ,D, C) where
X is a set of variables, D is a set of finite domains and C is a set of constraints
that restrict certain simultaneous variables assignments. There are several types
of CSPs such as numerical CSPs, boolean CSPs, set CSPs, etc. They differ
fundamentally from the domain types and filtering techniques. We present here
more precisely set CSPs that are used in our modeling. First, we define Set
Intervals. Then we introduce set CSPs, and give an example. Finally we present
some filtering rules for set CSPs.

Definition 2 (Set Interval). let lb and ub be two sets such that lb ⊂ ub, the
set interval [lb..ub] is defined as follows: [lb..ub] = {E such that lb ⊆ E and E ⊆
ub}.
Set intervals avoid data storage problems due to the size of domains: they model
the domain and encapsulate all the possible values of the variables. For ex-
ample: [{1}..{1, 2, 3}] summarizes {{1}, {1, 2}, {1, 3}, {1, 2, 3}} and [{}..{1, 2, 3}]
summarizes 2{1,2,3}.

Definition 3 (Set CSP). A set constraint satisfaction problem (set CSP) is
a 3-uple (X ,D, C) where C = {c1, ..., cm} is a set of constraints associated to a
set X = {X1, ..., Xn} of variables. For each variable Xi, an initial domain of set
intervals (or union of set intervals) DXi is given and D = {DXi , ..., DXn}.
In order to illustrate the declarative feature and the expressiveness of set CSPs,
we give the following example.

Example. [29] Two transmitters have to be assigned to two radio frequencies
each. Available frequencies are {1, 2, 3, 4} for the first transmitter and {3, 4, 5, 6}
for the second one. The distance between these two frequencies is equal to the
absolute value of the difference between these frequencies. The constraints are:

438 M. Khiari, P. Boizumault, and B. Crémilleux

– two radio frequencies have to be assigned to each transmitter: c1 ∧ c2.
– both transmitters do not share frequencies: c3

– two frequencies within a transmitter must have at least a distance equals to
2: c4

– the first transmitter requires the frequency 3: c5

– the second transmitter requires the frequency 4: c6

It can be expressed as a set CSP (X ,D, C), where:

– X = {t1, t2} where t1 and t2 are the two transmitters.
– D(t1) = [{} .. {1, 2, 3, 4}] and D(t2) = [{} .. {3, 4, 5, 6}].
– C = {c1, c2, c3, c4, c5, c6} where:

• c1 | t1 |= 2
• c2 | t2 |= 2
• c3 t1 ∩ t2 = ∅
• c4 ∀v1, v2 ∈ ti, | v1 − v2 |≥ 2 i = 1, 2
• c5 3 ∈ t1
• c6 4 ∈ t2

This problem has a unique solution where the first transmitter is assigned to the
frequencies {1, 3} and the second to {4, 6}.

Examples of Filtering Rules for Set CSPs. For CSPs, filtering consists
on reducing the variable domains in order to remove values that cannot occur
in any solution. As soon as a domain DXi becomes empty (i.e., there is no
available value for Xi), a failure is generated for the search. Filtering rules for
integer intervals and set intervals are presented in [22,19,12]. We now present
two examples of filtering rules for set intervals, the inclusion and the intersection
constraints:

Let Dx = [ax..bx], Dy = [ay .. by] and Dz = [az .. bz] three domains repre-
sented by set intervals and D′

x, D′
y and D′

z the filtered domains.

– Constraint: X ⊂ Y
Filtering rule: if ax ⊂ by then

D′
x = [ax .. bx ∩ by]

D′
y = [ax ∪ ay .. by]

else
D′

x = ∅, D′
y = ∅

– Constraint: Z = X ∩ Y
Filtering rule: if (bx ∩ by) ⊂ bz and (bx ∩ by) �= ∅ then

D′
x = [ax ∪ az .. bx \ ((bx ∩ ay) \ bz]

D′
y = [ay ∪ az .. by \ ((by ∩ ax) \ bz]

D′
z = [az ∪ (ax ∩ ay) .. bz ∩ bx ∩ by]

else
D′

x = D′
y = D′

z = ∅

Combining CSP and Constraint-Based Mining for Pattern Discovery 439

Programming Tool: ECLiPSe. [10] is a Constraint Programming Tool sup-
porting the most common techniques used in solving constraints satisfaction (or
optimization) problems: Constraint Satisfaction Problems, Mathematical Pro-
gramming, Local Search and combinations of those. ECLiPSe is built around
the Constraint Logic Programming paradigm [1]. Different domains of con-
straints as numeric CSP and Set CSPs can be used together. Finally, libraries
for solving set CSPs, as ic-sets or conjunto [12], are available in ECLiPSe.

4 Set Constraint Programming for Pattern Discovery

Our approach is based on two major points. First, we use the wide possibilities
of modelization and resolution given by the CSPs, in particular the set CSPs and
numeric CSPs. Second, we take benefit from the recent progress on mining local
patterns. The last choice is also strengthened by the fact that local constraints
can be solved before and regardless n-ary constraints.

In this section, we start by giving an overview of our approach. Then we
describe each of the three steps of our method by considering the example of the
exception rules described in Section 2.2.

4.1 General Overview

Figure 1 provides a general overview of the three steps of our approach:

1. Modeling the query as CSPs, then splitting constraints into local ones and
n-ary ones.

2. Solving local constraints using a local pattern extractor (Music-dfs, intro-
duced in Section 3.1) which produces an interval condensed representation
of all patterns satisfying the local constraints.

3. Solving n-ary constraints of the CSPs by using ECLiPSe (introduced in
Section 3.2) where the domain of each variable results from the interval
condensed representation (computed in the Step-2).

4.2 Step-1: Modelling the Query as CSPs

Let r be a dataset having nb transactions, and I the set of all its items. We
model the problem by using two CSPs P and P ′ that are inter-related:

1. Set CSP P = (X ,D, C) where:
– X = {X1, ..., Xn}. Each variable Xi represents an unknown itemset.
– D = {DX1 , ..., DXn}. The initial domain of each variable Xi is the set

interval [{} .. I].
– C is a conjunction of set constraints by using set operators (∪, ∩, \, ∈,

/∈, ...)
2. Numeric CSP P ′ = (F ,D′, C′) where:

– F = {F1, ..., Fn}. Each variable Fi is the frequency of the itemset Xi.

440 M. Khiari, P. Boizumault, and B. Crémilleux

Fig. 1. General overview of our 3-steps method

– D′ = {DF1 , ..., DFn}. The initial domain of each variable Fi is the integer
interval [1 .. nb].

– C′ is a conjunction of arithmetic constraints.

Then, the whole set of constraints (C ∪C′) is divided into two subsets as follows:

– Cloc is the set of local constraints to be solved (by Music-dfs). Solutions
are given in the form of an interval condensed representation.

– Cn−ary is the set of n-ary constraints to be solved (by ECLiPSe), where
the domain of the variables Xi and Fi will be deduced from the interval
condensed representation computed in the previous step.

Local (unary) constraints can be solved before and regardless n-ary constraints.
The search space of the n-ary constraints is reduced by the space of solutions
satisfying local constraints. This ensures that every solution verifies both local
and n-ary constraints.

4.3 Example: Modeling the Exception Rules as CSPs

Recall that the definition of the pairs of exception rules is given in Section 2.2.

Reformulation: Let freq(X) be the frequency value of the itemset X . Let I
and ¬I ∈ I (in this example, I and ¬I represent the two class values of the data
set). Let γ1, γ2, δ1, δ2 ∈ N. The exception rules constraint can be formulated as
it follows:

– X\Y → I can be expressed by the conjunction: freq((X \ Y)2I) ≥ γ1 ∧
(freq(X \ Y) − freq((X \ Y) I)) ≤ δ1 which means that X\Y → I must
be a frequent rule having a high confidence value.

2 The symbol � denotes the disjoint union operator.

Combining CSP and Constraint-Based Mining for Pattern Discovery 441

– X → ¬I can be expressed by the conjunction: freq(X¬I) ≤ γ2 ∧(freq(X)−
freq(X ¬I)) ≤ δ2 which means that X → ¬I must be a rare rule having a
high confidence value.

To sum up:

exception(X → ¬I) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∃Y ⊂ X such that:
freq((X \ Y) I) ≥ γ1 ∧
(freq(X \ Y) − freq((X \ Y) I)) ≤ δ1 ∧
freq(X ¬I) ≤ γ2 ∧
(freq(X) − freq(X ¬I)) ≤ δ2

CSP Modelisation: The CSP variables are defined as follows:

– Set variables {X1, X2, X3, X4} representing unknown itemsets:
• X1 : X \ Y ,
• X2 : (X \ Y) I (common sense rule),
• X3 : X ,
• X4 : X ¬I (exception rule).

– Integer variables {F1, F2, F3, F4} representing their frequency values (vari-
able Fi denotes the frequency of the itemset Xi).

Table 2 provides the constraints modeling the exception rules.

Table 2. Exception rules modeled as CSP constraints

Constraints CSP formulation Local N-ary

F2 ≥ γ1 ×
freq((X \ Y) � I) ≥ γ1 ∧ I ∈ X2 ×

∧ X1 � X3 ×
freq(X \ Y) − freq((X \ Y) � I) ≤ δ1 F1 − F2 ≤ δ1 ×

∧ X2 = X1 � I ×
freq(X � ¬I) ≤ γ2 F4 ≤ γ2 ×

∧ ¬I ∈ X4 ×
freq(X) − freq(X � ¬I) ≤ δ2 F3 − F4 ≤ δ2 ×

∧ X4 = X3 � ¬I ×

Summary:

– Set CSP
• X = {X1, ..., X4}
• C = {(I ∈ X2), (X2 = X1 I), (¬I ∈ X4), (X4 = X3 ¬I), (X1 � X3})

– Numeric CSP
• F = {F1, ..., F4}
• C′ = {(F2 ≥ γ1), (F1 − F2 ≤ δ1), (F4 ≤ γ2), (F3 − F4 ≤ δ2)}

– Cloc = {(I ∈ X2), (F2 ≥ γ1), (F4 ≤ γ2), (¬I ∈ X4)}
– Cn−ary = {(F1 − F2 ≤ δ1), (X2 = X1 I), (F3 − F4 ≤ δ2), (X4 = X3

¬I), (X1 � X3)}

442 M. Khiari, P. Boizumault, and B. Crémilleux

4.4 Step-2: Solving Local Constraints

As already said, we use for this task Music-dfs (see Section 3.1) which mines
soundly and completely local patterns. In order to fully benefit from the effi-
ciency of the local pattern mining, the set of local constraints Cloc is split into
a disjoint union of Ci (for i ∈ [1..n]) where each Ci is the set of local constraints
related to Xi and Fi. Each Ci can be separately solved. Let CRi be the interval
condensed representation of all the solutions of Ci. CRi =

⋃
p(fp, Ip) where Ip

is a set interval verifying: ∀x ∈ Ip, freq(x) = fp. Then the filtered domains (see
Section 4.3) for variable Xi and variable Fi are:

– DFi : the set of all fp in CRi

– DXi :
⋃

Ip∈CRi
Ip

Example. Let us consider the dataset r (see Table 1) and the local constraints
for the exception rules Cloc = {(I ∈ X2), (F2 ≥ γ1), (F4 ≤ γ2), (¬I ∈ X4)} (see
Section 4.3). The respective values for (I,¬I, γ1, δ1, γ2, δ2) are (c1, c2, 2, 1, 1, 0).
The local constraints set related to X2 is C2 = {c1 ∈ X2, F2 ≥ 2} is solved
by Music-dfs with the following query showing that the parameters given to
Music-dfs are straightforwardly deduced from Cloc.

./music-dfs -i donn.bin -q "{c1} subset X2 and freq(X2)>=2;"
X2 in [A, c1]..[A, c1, B] U [B, c1] -- F2 = 2 ;
X2 in [C, c1] -- F2 = 3

4.5 Step-3: Solving n-ary Constraints

Then, from the condensed representation of all patterns satisfying local con-
straints, domains of the variables Xi and Fi (for i ∈ {1, 2, 3, 4}) are updated.

Given the parameters I = c1,¬I = c2, δ1 = 1 and δ2 = 0 (γ1 = 2 and
γ2 = 1 are already used in Step-2) and the data set in Table 1, the following
ECLiPSe session illustrates how all pairs of exception rules can be obtained by
using backtracking:

[eclipse 1]:
?- exceptions(X1, X2, X3, X4).
Sol1 : X1 = [A,B], X2=[A,B,c1], X3=[A,B,C], X4=[A,B,C,c2];
Sol2 : X1 = [A,B], X2=[A,B,c1], X3=[A,B,D], X4=[A,B,D,c2];
.../...

5 Experiments

This section shows the practical usage and the feasibility of our approach. This
experimental study is conducted on the postoperative-patient-data coming from

Combining CSP and Constraint-Based Mining for Pattern Discovery 443

the UCI machine learning repository3. This data set gathers 90 objects described
by 23 items and characterized by two classes (two objects of a third class value
were put aside). We test our approach by using the exception rules as a n-
ary constraint (in the following, we use a class value for the item I given in
the definition of an exception rule). As previously said, we use Music-dfs (see
Section 3.1) and ECLiPSe (see Section 3.2). All the tests were performed on a
2 GHz Intel Centrino Duo processor with Linux operating system and 2GB of
RAM memory.

These experiments show the feasibility of our approach. Given (I, γ1, δ1, γ2, δ2)
a set of values, our method is able to mine the correct and complete set of all
pairs of exception rules.

Fig. 2. Number of rules according to γ1 (left) and δ1 (right)

Figure 2 depicts the number of pairs of rules according to γ1 (left part of the
figure) and δ1 (right part of the figure). We tested several combinations of the
parameters. As expected, the lower γ1 is, the larger the number of pairs of ex-
ception rules. Note that the decreasing of the curves is approximatively the same
for all the combinations of parameters. The result is similar when δ1 varies (right
part of Figure 2): the higher δ1 is, the larger the number of pairs of exception
rules (when δ1 increases, the confidence decreases so that there are more common
sense rules). Interestingly, these curves quantify the number of pairs of exception
rules according to the sets of parameters. Some cases seem to point out pairs
of rules of good quality. For instance, with (γ1 = 20, δ1 = 5, γ2 = 1, δ2 = 0),
we obtain 25 pairs of rules with a common sense rule having a confidence
value greater than or equal to 83% and an exact exception rule (i.e., confi-
dence value equals 100%). Moreover, our approach enables us in a natural way
to add new properties such as the control of the sizes of rules. If the user wants
that the number of items added to an exception rule remains small with re-
gards to the size of the common sense rule, it can be easily modeled by a new

3 www.ics.uci.edu/~mlearn/MLRepository.html

www.ics.uci.edu/~mlearn/MLRepository.html

444 M. Khiari, P. Boizumault, and B. Crémilleux

Fig. 3. Runtime according to the number of intervals of the condensed representations

constraint: for instance, the number of added items to an exception rule must
be lower than the minimum of a number (e.g., 3) and the size of the common
sense rule. It highlights the flexibility of our approach.

Figure 3 details the runtime of our method according to the number of inter-
vals of the condensed representation, i.e., the size of the condensed representa-
tion. In this experiment, for each dot of the curve, the four variables have the
same domain and thus the same number of intervals. Obviously, the larger the
number of intervals is, the higher the runtime (note that we use a logarithmic
scale on the Y axis). In the case of exception rules, it is interesting to note that
the runtime decreases when the quality of the exception rule pairs increases. In-
deed, looking for common sense rules with high frequency and reliable exception
rules leads to infer local constraints giving more powerful pruning conditions
and thus less intervals.

Table 3 indicates the number of intervals of the variable X2 in the condensed
representation (see Section 4.3) according to several local constraints. It shows
the interest of an approach based on local constraint mining.

Discussion. We briefly discuss the set union operator for set CSPs which is a key
point in our approach. In order to perform bound consistency filtering, set CSP
solvers approximate the union of two set intervals by their convex closure. The
convex closure of [lb1 .. ub1] and [lb2 .. ub2] is defined as [lb1 ∩ lb2 .. ub1 ∪ ub2]. So,
if filtering is applied a lot of times on a same variable domain, this domain may
reach the whole set [∅ .. I] and specific information gathered during the search
would be lost whereas this information is useful to limit the size of intervals. To
circumvent this problem, for each variable Xi with the condensed representation
CRi =

⋃
p(fp, Ip), a search is successively performed upon each Ip. This approach

is sound and complete and we use it in our experiments. Nevertheless, with this
method, we do not fully profit from filtering because removing a value is propa-
gated only in the treated intervals and not in the whole domains. It explains the
results of Section 5 showing that the runtime strongly increases when the number

Combining CSP and Constraint-Based Mining for Pattern Discovery 445

Table 3. Number of intervals according to several local constraints (case of DX2)

Local constraint Number of intervals in DX2

- 3002
I ∈ X2 1029

I ∈ X2 ∧ freq(X2) >= 20 52
I ∈ X2 ∧ freq(X2) >= 25 32

of intervals increases. Alternative solutions consist of implementing a set interval
union operator in the kernel of the solver or using non-exact condensed representa-
tions to reduce the number of produced intervals (e.g., a condensed representation
based on maximal frequent itemsets). In this case, the number of intervals repre-
senting the domains will be smaller, but, due to the approximations, it should be
necessary to memorize forbidden values.

6 Conclusion and Future Work

In this paper we have presented a new approach for pattern discovery. Its great
interest is to model in a flexible way any set of constraints combining several
local patterns. The complete and sound set of patterns satisfying the constraints
is mined thanks to a joint cooperation between a solver on set constraint pro-
gramming which copes with n-ary constraints and a solver on local patterns to
take benefit on the well-mastered methods on local constraint mining. We think
that it is this combination between the local and n-ary levels which enables us
the discovery of such patterns. Experiments show the feasibility of our approach.

In classic CSPs, all variables are existentially quantified. Further work is to
introduce the universal quantification (∀): this quantifier would be precious to
model important constraints such as the peak constraint (the peak constraint
compares neighbor patterns and a peak pattern is a pattern whose all neighbors
have a value for a measure lower than a threshold). For that purpose, we think
that recent works as Quantified Constraints Satisfaction Problems (QCSP) [2,20]
could be useful.

Acknowledgments. The authors would like to thank Arnaud Soulet for very
fruitful discussions and Music-dfs prototype. This work is partly supported by
the ANR (French Research National Agency) funded project Bingo2 ANR-07-
MDCO-014.

References

1. Apt, K.R., Wallace, M.: Constraint Logic Programming using Eclipse. Cambridge
University Press, New York (2007)

2. Benhamou, F., Goualard, F.: Universally quantified interval constraints. In:
Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 67–82. Springer, Heidelberg (2000)

446 M. Khiari, P. Boizumault, and B. Crémilleux

3. Besson, J., Robardet, C., Boulicaut, J.-F.: Mining a new fault-tolerant pattern type
as an alternative to formal concept discovery. In: 14th International Conference on
Conceptual Structures (ICCS 2006), Aalborg, Denmark, pp. 144–157. Springer,
Heidelberg (2006)

4. Bringmann, B., Zimmermann, A.: The chosen few: On identifying valuable pat-
terns. In: Proceedings of the 12th IEEE International Conference on Data Mining
(ICDM 2007), Omaha, NE, pp. 63–72 (2007)

5. Calders, T., Rigotti, C., Boulicaut, J.-F.: A survey on condensed representations
for frequent sets. In: Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.) Constraint-
Based Mining and Inductive Databases. LNCS (LNAI), vol. 3848, pp. 64–80.
Springer, Heidelberg (2006)

6. Crémilleux, B., Soulet, A.: Discovering knowledge from local patterns with global
constraints. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y.,
Gavrilova, M.L. (eds.) ICCSA 2008, Part II. LNCS, vol. 5073, pp. 1242–1257.
Springer, Heidelberg (2008)

7. De Raedt, L., Guns, T., Nijssen, S.: Constraint Programming for Itemset Mining.
In: ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 14th edn., Las Vegas, Nevada, USA (2008)

8. De Raedt, L.: A theory of inductive query answering. In: Proceedings of the IEEE
Conference on Data Mining (ICDM 2002), Maebashi, Japan, 2002, pp. 123–130
(2002)

9. De Raedt, L., Zimmermann, A.: Constraint-based pattern set mining. In: Proceed-
ings of the Seventh SIAM International Conference on Data Mining, Minneapolis,
Minnesota, USA, April 2007, SIAM (2007)

10. ECLiPSe. Eclipse documentation, http://www.eclipse-clp.org
11. Gecode Team. Gecode: Generic constraint development environment (2006),

http://www.gecode.org
12. Gervet, C.: Interval Propagation to Reason about Sets: Definition and Implemen-

tation of a Practical Language. Constraints 1(3), 191–244 (1997)
13. Giacometti, A., Miyaneh, E.K., Marcel, P., Soulet, A.: A framework for pattern-

based global models. In: 10th Int. Conf. on Intelligent Data Engineering and Au-
tomated Learning, Burgos, Spain, pp. 433–440 (2009)

14. Hand, D.J.: ESF exploratory workshop on Pattern Detection and Discovery in
Data Mining. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection
and Discovery. LNCS (LNAI), vol. 2447, pp. 1–12. Springer, Heidelberg (2002)

15. Kléma, J., Blachon, S., Soulet, A., Crémilleux, B., Gandrillon, O.: Constraint-based
knowledge discovery from sage data. Silico Biology 8(0014) (2008)

16. Knobbe, A.: From local patterns to global models: The lego approach to data
mining. In: International Workshop From Local Patterns to Global Models co-
located with ECML/PKDD 2008, Antwerp, Belgium, September 2008, pp. 1–16
(2008)

17. Knobbe, A., Ho, E.: Pattern teams. In: Fürnkranz, J., Scheffer, T., Spiliopoulou,
M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 577–584. Springer, Heidelberg
(2006)

18. Lakshmanan, L.V., Ng, R., Hah, J., Pang, A.: Optimization of constrained frequent
set queries with 2-variable constraints (1998)

19. Lhomme, O.: Consistency techniques for numeric csps. In: Proc. of the 13th IJCAI,
Chambery, France, pp. 232–238 (1993)

20. Mamoulis, N., Stergiou, K.: Algorithms for quantified constraint satisfaction prob-
lems. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 752–756. Springer,
Heidelberg (2004)

http://www.eclipse-clp.org
http://www.gecode.org

Combining CSP and Constraint-Based Mining for Pattern Discovery 447

21. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

22. Moore, R.E.: Interval analysis. Prentice-Hall, Englewood Cliffs (1966)
23. Ng, R.T., Lakshmanan, V.S., Han, J., Pang, A.: Exploratory mining and pruning

optimizations of constrained associations rules. In: Proceedings of ACM SIGMOD
1998, pp. 13–24. ACM Press, New York (1998)

24. Nijssen, S., Guns, T., De Raedt, L.: Correlated itemset mining in roc space: a
constraint programming approach. In: ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD 2009), Paris, France, June 2009,
pp. 647–655 (2009)

25. Siebes, A., Vreeken, J., van Leeuwen, M.: Item sets that compress. In: Proceedings
of the Sixth SIAM International Conference on Data Mining, Bethesda, MD, USA,
April 2006, SIAM, Philadelphia (2006)

26. Soulet, A., Crémilleux, B.: An efficient framework for mining flexible constraints.
In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518,
pp. 661–671. Springer, Heidelberg (2005)

27. Soulet, A., Klema, J., Crémilleux, B.: Efficient Mining Under Rich Constraints
Derived from Various Datasets. In: Džeroski, S., Struyf, J. (eds.) KDID 2006.
LNCS, vol. 4747, pp. 223–239. Springer, Heidelberg (2007)

28. Suzuki, E.: Undirected Discovery of Interesting Exception Rules. International
Journal of Pattern Recognition and Artificial Intelligence 16(8), 1065–1086 (2002)

29. Thornary, V., Gensel, J., Sherpa, P.: An hybrid representation for set constraint
satisfaction problems. In: Workshop on Set Constraints co-located with the fourth
Int. Conf. on Principles and Practice of Constraint Programming, Pisa, Italy (1998)

30. Yin, X., Han, J.: CPAR: classification based on predictive association rules. In: pro-
ceedings of the 2003 SIAM Int. Conf. on Data Mining (SDM 2003), San Fransisco,
CA (May 2003)

	Combining CSP and Constraint-Based Mining for Pattern Discovery
	Introduction
	Definitions and Motivations
	Definitions
	Context and Motivations

	Background: Related Works and Set CSP
	Local Patterns and Pattern Sets Discovery
	Set CSP

	Set Constraint Programming for Pattern Discovery
	General Overview
	Step-1: Modelling the Query as CSPs
	Example: Modeling the Exception Rules as CSPs
	Step-2: Solving Local Constraints
	Step-3: Solving n-ary Constraints

	Experiments
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

