
Optimizing Constraint-Based Mining by Automatically Relaxing Constraints

Arnaud Soulet Bruno Crémilleux
GREYC, CNRS - UMR 6072, Université de Caen

Campus Côte de Nacre
F-14032 Caen Cédex France

{Forename.Surname}@info.unicaen.fr

Abstract

In constraint-based mining, the monotone and anti-
monotone properties are exploited to reduce the search
space. Even if a constraint has not such suitable properties,
existing algorithms can be re-used thanks to an approxima-
tion, called relaxation. In this paper, we automatically com-
pute monotone relaxations of primitive-based constraints.
First, we show that the latter are a superclass of combina-
tions of both kinds of monotone constraints. Second, we
add two operators to detect the properties of monotonicity
of such constraints. Finally, we define relaxing operators to
obtain monotone relaxations of them.

1 Introduction

Mining patterns under constraints is a significant field of
research in data mining. Many constraints like interesting-
ness measures or syntactic constraints are useful to achieve
relevant patterns. Although the constraint is chosen by the
user, the mining step has to be automated in order to facili-
tate the KDD process. In particular, to handle the constraint
should be independent from the user.

Many algorithms reduce the search space of patterns by
using the monotonicity property [9]. Unfortunately, most
of the constraints are neither monotone, nor anti-monotone.
Nevertheless, such “difficult” constraints can be extracted
by re-using available algorithms. Indeed, the constraint is
approximated by another having suitable monotone prop-
erty [5, 4]. The collection of extracted patterns correspond-
ing to this approximation has to be a superset of the collec-
tion satisfying the original constraint. Thereby, in a post-
processed step, a basic filtering selects the desired patterns.
The approximated constraint is called relaxation. To the
best of our knowledge, there is no existing theoretical work
which proposes a general approach to obtain relaxations
having monotone properties. A specialist of data mining or
a mathematician can compute a relaxation of a given con-

straint. However, a process or a common user have not the
ability to find it.

In this paper, we propose three main contributions. At
first, we show that the primitive-based constraints are a su-
perclass of both kinds of monotone constraints and their
combinations. Secondly, we propose an original approach
to detect monotone constraints by applying new formal op-
erators, named the monotone and anti-monotone testing
operators. Finally, we provide a monotone and an anti-
monotone relaxations for each primitive-based constraint,
these relaxations are automatically obtained by the mono-
tone and anti-monotone relaxing operators.

This paper is organized in the following way. Section 2
introduces the basic notations and related works. Section 3
depicts the set of constraints that we address and links them
to the monotone constraints. Section 4 defines the opera-
tors which allows us to detect monotonicity. Finally, these
operators are exploited to relax constraints in Section 4.

2 Context and related works

Basic definitions A transactional dataset D is a triplet
(A,O, R) where A is a set of attributes, O is a set of ob-
jects and R ⊆ A × O is a binary relation between the at-
tributes and the objects. (a, o) ∈ R expresses that the object
o has the attribute a. A pattern is a set of attributes. The
aim of constrained patterns mining is to extract all patterns
present in D and satisfying a predicate q (also called query
or constraint). Many predicates have a particular property
named monotonicity. A constraint q is monotone (resp.
anti-monotone) according to the specialization iff whenever
X ⊆ Y then q(X) ⇒ q(Y ) (resp. q(Y ) ⇒ q(X)). The
set of monotone (resp. anti-monotone) constraints is de-
noted by QM (resp. QAM ). Let us remark that we of-
ten use “(anti-)monotone” instead of “monotone and anti-
monotone” when that is not ambiguous.

Table 1 provides several examples of constraints with
their properties about monotonicity (i.e., QM and QAM ).
In general, a constraint is not monotone, neither anti-



Constraint QM QAM

q1(X) ≡ count(X) ≥ γ ×
q2(X) ≡ length(X)/count(X) < ρ ×
q3(X) ≡ A ⊆ X ×
q4(X) ≡ sum(X.val) ≥ γ ×
q5(X) ≡ length(X) × count(X) < ρ
q6(X) ≡ (q1(X) ∨ q2(X)) ∧ q3(X)
q7(X) ≡ 2 × length(X) − length(X) ≤ ρ ×

monotone (e.g., the constraints q5 or q6). Let us note that
the function count denotes the frequency of a pattern (i.e.,
the number of objects in D that contain X), and length its
cardinality. Given a function val : A → �+, we extend it to
a pattern X and note X.val the multiset {val(a)|a ∈ X}.
This kind of function is used with the usual SQL-like primi-
tives sum, min and max. For instance, sum(X.val) is the
sum of val of each attribute of X .

In this paper, we focus on relaxing constraints:

Definition 1 (relaxed constraint) Let q be a constraint, a
constraint q′ is a relaxed constraint of q iff q′ is always sat-
isfied whenever q is satisfied i.e., q ⇒ q′.

Starting from a user-specified constraint q, we want to
automatically define a monotone constraint qM and an anti-
monotone one qAM which are relaxations of q, i.e. q ⇒ qM

and q ⇒ qAM . For instance, the constraints q3 ∈ QM and
(q1 ∨ q2) ∈ QAM are relaxed constraints of q6.

Related work In [9], the authors defines the notion of
(anti-)monotone constraints, but they do not provide a char-
acterization of this notion. In particular, the monotonicity
of a constraint cannot be deduced from primitives. Given
an (anti-)monotone constraint, the search space can be ef-
ficiently pruned by a general level-wise algorithm [1, 9].
Many usual and useful constraints are anti-monotone (e.g.,
freeness or q1) or monotone constraints according to the
specialization (e.g., q3 and q4). There are specific algo-
rithms devoted to mine a combination of one monotone
constraint and one anti-monotone constraint according to
the specialization [3, 2]. More generally, other particular
constraints [7] or classes of constraints [10, 11, 12], use an
additional monotone constraint in order to focus on inter-
esting patterns and to improve the mining. The inductive
databases framework [6] proposes to decompose complex
constraints into several constraints having suitable proper-
ties like monotonicity. Based on version spaces, an algebra
is proposed to evaluate and optimize such inductive queries
[8]. Nevertheless, to the best of our knowledge, there is
no existing theoretical work which proposes a general ap-

proach to identify monotone properties or to relax inductive
queries.

3 Scope of the primitive-based constraints

We briefly recall the framework of the primitive-based
constraints that we have introduced in [12] by giving a more
general definition.

Contrary to the usual classes of constraints, the definition
of primitive-based constraints is based on a set of primitives
defined as below:

Definition 2 (primitive) A function p : Si1 × · · · × Sin
→

Sj is a primitive of the primitive-based framework iff for
each variable, p is monotone function (when the others re-
main constant).

The set of primitives is denoted by P . Let us note that
Definition 2 implies that the domains Si1 ×· · ·×Sin

and Sj

are partially or totally ordered sets. In this paper, the used
primitives (see Section 2) are based on three spaces: the
booleans B (i.e. true or false), the positive reals �+ and
the patterns of LA, where LA denotes the language associ-
ated with the attributes A i.e. the power-set 2A. These dif-
ferent spaces are ordered sets: false < true for booleans,
usual ordering relation for reals and the inclusion operator
for sets.

In practice, more complex primitives (not monotone) are
useful to the user (e.g., the average). They can be seen as a
high-level primitive. The next definition provides the set of
all possible high-level primitives starting from P:

Definition 3 (high-level primitive) The high-level primi-
tives of degree n, denoted by Hn, is recursively defined by:

• if n = 0: H0 is the set of the primitives P defined on
LA.

• if n > 0: Hn is the set of functions h such that
h = p(h1, . . . , hk) where p ∈ P of arity k and ∀i ∈
{1, . . . , k}, hi ∈ Hni

, with maxi∈{1,...,k}ni = n − 1.
p(h1, . . . , hk) is named the decomposition of h.

In the following, the set of whole high-level primitives is
noted H i.e. H =

⋃∞
i=0 Hi.

A primitive-based constraint is a constraint which is a
high-level primitive of H:

Definition 4 (primitive-based constraint) A constraint
q : LA → B is a primitive-based constraint iff q is a
high-level primitive of H.

A primitive-based constraint q : LA → B is a combi-
nation of monotone primitives. This set of constraints is
denoted by Q. Then, we have Q = {q : LA → B|q ∈ H}.
All the constraints given by Table 1 belong to Q.



This section shows that the primitive-based constraints
compose a superclass of both kinds of monotone constraints
and their boolean combinations. It means that it is a general
framework.

In the above section, the primitive-based constraints
coming from our chosen primitives (e.g., count or length)
allow us to define numerous and varied (anti-)monotone
constraints (e.g., constraints q1, . . . , q4 belong to Q). Nev-
ertheless, there are (anti-)monotone constraints which can-
not be decomposed into such primitives. For instance, the
freeness cannot be defined directly.

In practice, the following property proves that our solver
can always be extended to a particular (anti-)monotone con-
straint:

Property 1 Let q be an (anti-)monotone constraint accord-
ing to the specialization, q is a monotone primitive.

In other words, Property 1 expresses that all the mono-
tone constraints according to specialization or generaliza-
tion are primitives of our framework. Our class of primitive-
based constraints Q is more general than the class of (anti-
)monotone constraints i.e., QM ∪QAM ⊆ Q. Furthermore,
as {∧,∨,¬} ⊂ P , the next property even proves that Q is
larger than boolean combinations of (anti-)monotone con-
straints.

Property 2 All the boolean combinations of primitive-
based constraints are primitive-based constraints.

This property ensures that a conjunction or disjunction
of primitive-based constraints is also a primitive-based one.
In particular, inductive queries like constraint q6, are a sub-
set of the primitive-based constraints. This shows that our
framework is adapted to treat them.

Thus, in Sections 4 and 5, we can handle inductive
queries and more complex constraints to identify some in-
teresting monotone properties and to deduce relaxations.

4 Detecting monotone properties

This section defines new operators on the primitive-
based framework in order to detect some potential mono-
tone properties of a primitive-based constraint.

The automatic analysis of the monotone properties of a
constraint is not a trivial task. In the case of the minimal fre-
quency constraint, the anti-monotone property clearly stems
from the fact that the shorter a pattern is, the more frequent
it is. With the constraint q2, the anti-monotone property is
less intuitive and more difficult to deduce. Besides, how
to explain that q2 is anti-monotone and not q5 whereas q5

is very similar to q2? Intuitively, the monotone properties
of the primitives seem to be fundamental. Indeed, the only
difference between q2 ≡ length(X)/count(X) < ρ and
q5 ≡ length(X) × count(X) < ρ is the arithmetical op-
erator applied to the length and the frequency. One can
note that × is an increasing function according to the sec-
ond operand (on the positive reals) while / is a decreasing
one. Let us now formalize this intuition for any constraint q
of Q. We start by giving the definition of (anti-)monotone
testing operators.

Definition 5 (testing operators) Let h be a high-level
primitive, the booleans �h
M and �h�M are defined by:

• if deg h = 0: �h
M = true iff h decreases and
�h�M = true iff h is increases.

• if deg h > 0: �h
M = b1 ∧ · · · ∧ bk and �h�M =
B1∧· · ·∧Bk where p(h1, . . . , hk) is the decomposition
of h and for each variable i ∈ {1, . . . , k}:




bi = �hni

M and Bi = �hni

�M if p increases with
the ith variable

bi = �hni
�M and Bi = �hni


M otherwise

According to Theorem 1, ��
M (resp. ���M ) is named the
anti-monotone (resp. monotone) testing operator according
to the specialization.

Theorem 1 (correction of testing operators) Let q be a
primitive-based constraint, if �q
M (resp. �q�M ) is equal
to true, then q is an anti-monotone (resp. a monotone) con-
straint according to the specialization.

Thus, Theorem 1 gives a partial characterization of both
kinds of monotone properties based on primitives. Given a
constraint, whenever the answer of �q
M or �q�M is true,
we know the monotone property of this constraint. Other-
wise, the answer is false and nothing can be asserted about
the constraint. For instance, even if q7 is an anti-monotone
constraint, we have �q7
M = false.

Let us come back on the constraint q2 given by Ta-
ble 1 in order to verify the anti-monotone property thanks
to the operator ��
M : �length(X)/count(X) < ρ
M =
�length(X)/count(X)�M ∧ �ρ
M = �length(X)�M ∧
�count(X)
M ∧ true = true ∧ true = true. Now,
we can test the anti-monotone property on the constraint
q5: �q5(X)
M = �length(X) × count(X) < ρ
M =
�length(X) × count(X)�M ∧ �ρ
M = �length(X)�M ∧
�count(X)�M ∧ true = true ∧ false = false. In the
same way, we obtain that �q5�M is equal to false.

In the rest of paper, �Q
M (resp. �Q�M ) designates
the set of constraints which has a true answer for the anti-
monotone (resp. monotone) testing operator (in particular,



{q1, q2} ⊂ �Q
M and {q3, q4} ⊂ �Q�M ). Thereby, The-
orem 1 and the negative examples q7 and ¬q9 ensure that
�Q
M ⊂ QAM and �Q�M ⊂ QM .

The next section provides an adequate using of
(anti-)monotone testing operators to relax constraints.

5 Relaxing primitive-based constraints

This section provides two new operators which automat-
ically relax a constraint to achieve a relaxed constraint sat-
isfying monotone properties.

By using the (anti-)monotone testing operators devel-
oped in the previous section, we want to take into account
the properties of monotonicity in order to compute (anti-
)monotone relaxations. This approach relies on the behav-
ior of relaxation stemming from the boolean combinations.
We start by giving the definition of (anti-)monotone relax-
ing operators:

Definition 6 ((anti-)monotone relaxing operators) Let q
be a primitive-based constraint, the constraints �q
R and
�q�R are recursively defined by (θ ∈ {∧,∨}):

�q
R =




q, if �q
M = true
�q1
Rθ�q2
R, if �q
M = false and q = q1θq2

true, otherwise

�q�R =




q, if �q�M = true
�q1�Rθ�q2�R, if �q�M = false and q = q1θq2

true, otherwise

For instance, the anti-monotone relaxation of q6 is
�(q1 ∨ q2) ∧ q3
R = �(q1 ∨ q2)
R ∧ �q3
R = (q1 ∨ q2) ∧
true = q1 ∨ q2. Analogously, �q6�R is equal to q3. Let us
note that the constraints �q6
R and �q6�R correspond to the
monotone relaxations proposed in Section 2.

Now, we give the most important result about relaxing
operators:

Theorem 2 (correction of relaxing operators) Let q ∈
Q, the constraint �q
R (resp. �q�R) is an anti-monotone
(resp. a monotone) relaxed constraint of q.

This theorem justifies that ��
R and ���R are respectively
named the anti-monotone relaxing operator and the mono-
tone relaxing operator. Let us note that the operator ��
R

(resp. ���R) is defined from Q to �Q
M (resp. �Q�M ).
We propose a practical method stemming from (anti-

)monotone relaxing operators. In our primitive-based
framework [12], we propose a constraint solver named MU-
SIC. The latter mines soundly and completely patterns un-
der a primitive-based constraint q. Nevertheless, it can ben-
efit from an anti-monotone constraint qAM to improve the
extraction. In such a context, we implement a constraint

relaxer in order to take into account the user-specified con-
straint q. It identifies the adequate anti-monotone constraint
qAM . Thus, starting from a simple parameter, it has a
twofold advantage: improving the efficiency of the mining
process without complicating it for the user.

6 Conclusion

In this paper, we have proposed a general approach
for automatically relaxing constraints belonging to the
primitive-based framework. We show that this set of
primitive-based constraints is a superclass of both kinds of
monotone constraints and deals with boolean combinations.
We defined two new operators which allow to detect mono-
tone or anti-monotone constraints. These operators iden-
tify relevant parts of the constraint with regard to monotone
properties. These parts are then combined and finally we
get a monotone and an anti-monotone relaxed constraints.
They can be efficiently pushed in the extraction stage. This
improves the KDD process without requiring a particular
theoretical knowledge of the user.

Acknowledgements. This work has been partially funded
by the ACI “masse de données” (MD 46, CNRS 2004-2007)
BINGO (Bases de données INductives pour la Gén0mique).

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In Proc. of VLDB, pages 487–499, 1994.

[2] F. Bonchi and C. Lucchese. On closed constrained frequent
pattern mining. In Proc. of ICDM, pages 35–42, 2004.

[3] C. Bucila, J. Gehrke, D. Kifer, and W. White. Dualminer:
A dual-pruning algorithm for itemsets with constraints. In
Proc. of SIGKDD, pages 42–51, 2002.

[4] A. L. O. Claudia Antunes. Mining patterns using relaxations
of user defined constraints. In Post-proc. of KDID, 2004.

[5] M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Se-
quential pattern mining with regular expression constraints.
In Proc. of VLDB, pages 223–234, 1999.

[6] T. Imielinski and H. Mannila. A database perspective on
knowledge discovery. Comm. Of The Acm, 1996.

[7] D. Kiefer, J. Gehrke, C. Bucila, and W. White. How to
quickly find a witness. In Proc. of SIGMOD/PODS, 2003.

[8] S. D. Lee and L. D. Raedt. An algebra for inductive query
evaluation. In Proc. of KDID, pages 80–96, 2003.

[9] H. Mannila and H. Toivonen. Levelwise search and bor-
ders of theories in knowledge discovery. Data Mining and
Knowledge Discovery, 1(3):241–258, 1997.

[10] R. Ng, L. V. S. Lakshmanan, J. Han, and T. Mah. Ex-
ploratory mining via constrained frequent set queries, 1999.

[11] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent
item sets with convertible constraints. In Proc. of ICDE,
pages 433–442, 2001.

[12] A. Soulet and B. Crémilleux. An efficient framework for
mining flexible constraints. In Proc. of PAKDD, pages 661–
670, 2005.


