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Abstract. Missing values are an old problem that is very common in
real data bases. We describe the damages caused by missing values on
condensed representations of patterns extracted from large data bases.
This is important because condensed representations are very useful to
increase the efficiency of the extraction and enable new uses of frequent
patterns (e.g., rules with minimal body, clustering, classification). We
show that, unfortunately, such condensed representations are unreliable
in presence of missing values. We present a method of treatment of
missing values for condensed representations based on δ-free or closed
patterns, which are the most common condensed representations. This
method provides an adequate condensed representation of these pat-
terns. We show the soundness of our approach, both on a formal point of
view and experimentally. Experiments are performed with our prototype
MVminer (for Missing Values miner), which computes the collection of
appropriate δ-free patterns.

1 Introduction

Context. Missing values in data bases are an old problem that always arises in
presence of real data, for instance, in the medical domain. With regard to opinion
polls, it is rare that interviewees take the pain to fill entirely the questionnaire.
It is a strong problem because many analysis methods (e.g., classification, re-
gression, clustering) are not able to cope with missing values. The deletion of
examples containing missing values can lead to biased data analysis. Elementary
techniques (e.g., use of the mean, the most common value, default value) are not
more satisfactory, because they exaggerate correlations [7]. At last some treat-
ments are devoted to specific databases [8], but it is difficult to apply them in the
general case and it is clear that there is not a single, independent and standard
method to deal with missing values. We will see that this problem occurs also
on condensed representations.

Condensed representations of frequent patterns provide useful syntheses of
large data sets [4,12], highlighting the correlations embedded in data. There is
a twofold advantages of such an approach. First, it allows to improve efficiency
of algorithms for usual tasks such as association rules [1]. Even if this tech-
nique is, today, well mastered, the use of condensed representations enables to
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achieve extraction of rules in contexts where usual Apriori-like algorithms fail
[3,12]. Second, condensed representations enable multiple uses of frequent pat-
terns [9,6,16] (e.g., strong rules, informative rules or rules with minimal body,
non-redundant rules, clustering, classification) which is a key point in many prac-
tical applications. These uses are today required by experts on data who know
that the whole value embedded in their data can only be acquired by the new
developments of such analysis methods.

Motivations. In real data bases, users have to cope with missing values and
we are going to see that, unfortunately, condensed representations are no more
valid in presence of missing values. This is the starting point of our work. Let
us give an example: the left part of Table 1 (called r or the reference table)
provides an example of a transactional database composed of 7 transactions
(each one identified by its Tid) and 5 items denoted A . . .E. For instance, in
medical area (e.g., Hodgkin’s disease), the item A denotes an item which means
‘‘Bsymptoms’’1 = present, the item B means mediastinum = enlarged, and
so on. This table is used as the running example throughout the paper. The right
part of Table 1 provides the condensed representation based on 0-free sets with
an absolute support threshold of 2. For each 0-free, we indicate its closure. These
notions are explained in Section 2.

Table 1. Running example of a database without missing values (r)

r

Tid Items
1 A D
2 C E
3 A B C D E
4 A D
5 A B D E
6 A B D E
7 A B C D E

0-free set closure 0-free set closure
A {D} AC {B, D, E}
B {A, D, E} AE {B, D}
C {E} BC {A, D, E}
D {A} CD {A, B, E}
E DE {A, B}

For instance, from this condensed representation, we can extract rules such
AE ⇒ BD with a support of 4 and a confidence of 100%. Now, let us suppose
that some parameters used in the definition of ‘‘Bsymptoms’’ are not been
caught, so we do not know for instance whether ‘‘Bsymptoms’’ = present is
true or not. Then, missing values appear and we use the character ’-’ before
an item to note such a situation. The left part of Table 2 (called r̃) includes 5
missing values.

How to deal with missing values? Elementary methods remove data with
missing values but it may lead to a biased data set from which extracted infor-
mation is unreliable. Let us see that in our example. The right part of Table 2

1 Bsymptoms are features of lymphoma, and include fever, drenching night sweats,
weight loss more than 10% of body mass in previous 6 months
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Table 2. Running example of a database with missing values (r̃)

r̃

Tid Items
1 A D
2 C E
3 A B C D E
4 −A D
5 A B −D E
6 −A −B D E
7 A B C D −E

0-free set closure 0-free set closure 0-free set closure
A AD ABC {E}
B AE {D} ABD {E}
C {E} BC {E} ABE {D}
D BD {E} ACD {E}
E BE {D} BCD {E}

AB CD {E} ABCD {E}
AC {E} DE {A, B}

depicts the condensed representation on r̃ achieved with this strategy. This con-
densed representation contains new patterns which are not present in the con-
densed representation of reference (extracted on r). We will qualify (see Section
2.3) such patterns of pollution. We also note that a lot of items have disappeared
from the almost-closures. Consequently, rules such as AE ⇒ BD are no longer
found. Clearly, missing values are responsible for the removal of relationships and
the invention of new groundless associations. Experiments in Section 4 show that
this result is general and it is clear that usual condensed representations cannot
safely be used in presence of missing values. The aim of this paper is to propose
a solution to solve this open problem.

Contributions. The contribution of this paper is twofold. First, we describe
the damages caused by missing values in condensed representations. Second, we
propose a method of treatment of missing values for condensed representations
based on δ-free or closed patterns (which are the most common condensed rep-
resentations). This method avoids these damages. We show the soundness of the
obtained condensed representations, both on a formal point of view and exper-
imentally. We think that this task is important in data mining owing to the
multiple uses of condensed representations.

Organization of the paper. This paper is organized as follows: Section 2 briefly
reviews the condensed representations of δ-free patterns and we set out in Sec-
tion 2.3 the effects of missing values on these representations. In Section 3 we
describe the corrections (and we give a formal result) that we propose so as to
treat missing values. Section 4 presents experiments both on benchmarks and
real world data (medical database on Hodgkin’s disease).

2 Condensed Representations

We give the necessary material on condensed representations which is required
for the rest of the paper and we present the negative effects of missing values.

2.1 Patterns Discovery

Let us consider a transactional database: a database r is a set of transactions t
composed of items. In Table 1 r = {t1, . . . , t7} where t1 = AD (note that we use



Condensed Representations in Presence of Missing Values 581

a string notation for a set of items, e.g., AD for {A, D}), t2 = CE, etc. Let Z
be a pattern (i.e. a set of items), an association rule based on Z is an expression
X ⇒ Y with X ⊂ Z and Y = Z\X.

The support of X with respect to a set of transactions r is the number of
transactions of r that contain X, i.e. supp(X, r) = |{t ∈ r | X ⊆ t}|. We note
rX the subset of transactions of r containing X, we have supp(X, r) = |rX |. If r
is clear from the context, we will use supp(X) for supp(X, r). The confidence of
X ⇒ Y is the proportion of transactions containing X that also contain Y [1],
i.e. conf(X ⇒ Y ) = supp(X ∪ Y )/supp(X).

2.2 δ-Free Patterns

Due to the space limitation, we give here only the key intuition of δ-free patterns
and the background required to understand the effects of missing values. We start
by defining δ-strong rules.

Definition 1 (δ-strong rule) A δ-strong rule is an association rule of the
form X ⇒ Y that admits a maximum of δ exceptions [13,3].

The confidence of such a rule is at least equal to 1 − (δ/supp(X)).

Definition 2 (δ-free pattern) A pattern Z is called δ-free if there is no δ-
strong rule X ⇒ Y (with X ⊂ Z and Y = Z\X) that holds.

The case δ = 0 (corresponding to 0-free patterns) is important: no rule with
confidence equal to 1 holds between proper subsets of Z. For instance, DE is a
0-free pattern because all rules constructed from proper subsets of DE have at
least one exception. If δ = 1, DE is not a 1-free set owing to the rule E ⇒ D
which has only one exception. From a technical perspective, δ-strong rules can be
built from δ-free patterns that constitute their left-hand sides [4]. δ-free patterns
are related to the concept of almost-closure:

Definition 3 (almost-closure) Let δ be an integer. AC(X, r), the almost-
closure of X in r, gathers patterns Y so that :

supp(X, r) − supp(X ∪ Y, r) ≤ δ (1)

Note that if X ⇒ Y is a δ-strong rule in r, items of Y belong to AC(X, r).
In other words, when an item belongs to AC(X, r), it means that it is present
in all the transactions that contain X with a number of exceptions bounded by
δ. Following our example given in Table 1, D ∈ AC(E, r) with δ = 1 (there is
only one exception, transaction t4). δ-freeness satisfies a relevant property (anti-
monotonous constraint) and we get tractable extractions for practical mining
tasks that are not feasible with Apriori-like algorithms [4].

A collection of frequent δ-free patterns is a condensed representation of the
collection of frequent patterns. If δ = 0, one can compute the support of every
frequent pattern. In this case, the almost-closure corresponds to the special case
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of the closure. Such closed patterns have relevant properties to compute infor-
mative [2] or non-redundant [16] rules, or achieve clustering [6]. If δ > 0, one
can approximate the support of every frequent pattern X with a bounded error:
in [3], it is shown that the error is very low in practice. δ-free patterns verify
suitable properties to build δ-strong rules with a high value of confidence [3] and
rules characterizing classes [5].

2.3 Effects of the Missing Values on the Condensed Representations
Based on δ-Free Patterns

Missing values produce effects on δ-free patterns and items of almost-closures.
Let us suppose that an item A belongs to the almost-closure of a δ-free X. It
means that A is always present with X except a number of exceptions lower than
δ. If missing values on A occur, this number of exceptions can only increase and
can become higher than δ: then, A comes out of the almost-closure and the
X ∪ {A} pattern becomes free (see Figure 1). In our example, with δ = 0, B
and D belong to the closure of AE on r whereas B comes out of this closure on
r̃ owing to the missing value on transaction t6. Moreover, AB and BE become
free and such created free patterns are qualified of pollution.

r
X

r
X

����
����
����
����

item
A

item
A

≤ δ

pattern X pattern X
missing values on A

}> δ

~

Fig. 1. Missing values on items of almost-closures

3 Corrections of the Missing Values

We present here our corrections on support and almost-closure to deal with
missing values. We start by giving the notion of disabled data which is a key
step in our corrections.

3.1 Disabled Data

In presence of missing values, support values decrease [14]. For instance, in our
example, supp(DE, r) = 4 but supp(DE, r̃) = 2. In fact, to compute properly
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the support of an itemset in r̃, it is necessary to distinguish the transactions of r̃
having at least one missing value among the items of X. These transactions will
be temporarily disabled to compute supp(X, r̃) because they do not enable to
take a decision to this support. It is shown that this approach allows to retrieve
relevant values of support [14].

Definition 4 (disabled data) A transaction t of r̃ is disabled for X if t con-
tains at least one missing value among the items of X. We note Dis(X, r̃) the
transactions of r̃ disabled for X.

With this approach, the whole data base is not used to evaluate a pattern X
(owing to the missing values on X) but, as data are only temporarily disabled,
finally the whole data base is used to evaluate all patterns.

3.2 Correction of the Effect of Missing Values

In case of missing values, we have to take into account, with respect to X, the
disabled data of a candidate pattern Y to test if Y ⊆ AC(X, r̃). We propose to
redefine the almost-closure of X as follows:

Definition 5 AC(X, r̃), the almost-closure of X in r̃, gathers patterns Y so
that :

supp(X, r̃) − supp(X ∪ Y, r̃) ≤ δ + Dis(Y, r̃X) (2)

Of course, this definition makes only sense if there remains at least one trans-
action in r̃ containing both X and Y .

Let us note that if there is no missing value, Dis(Y, r̃X) = 0 and r = r̃ and
we recognize the usual definition of the almost-closure (see Definition 3). This
new definition is fully compatible with the usual one when there are no missing
values. Inequality 2 can be seen as a generalization of Inequality 1 (Section 2.2).
Inequality 2 can be interpreted as a local relaxation of the constraint on δ (i.e.
δ is adjusted for each Y ) according to the number of missing values on Y in r̃X .
This definition leads to the important following property:

Property 1 Definition 5 of the almost-closure is sound in presence of missing
values, i.e. Y ⊂ AC(X, r) ⇒ Y ⊂ AC(X, r̃). Then, by using this definition,
the effect of missing values (loss of items from almost-closures and pollution of
δ-free patterns (cf. Section 2.3)) is corrected.

The two following lemmas help to prove this property.

Lemma 1 supp(X, r̃) = supp(X, r\Dis(X, r̃)) = supp(X, r) − |Dis(X, r̃)|
Proof The claim follows directly from Definition 4.

Lemma 2 supp(X ∪ Y, r̃) = supp(X ∪ Y, r) − |Dis(X, r̃)| − |Dis(Y, r̃X)|
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Proof The claim follows directly from Lemma 1 and the fact that |Dis(X ∪
Y, r̃)| = |Dis(X, r̃)| + |Dis(Y, r̃X)|.
It is now easy to prove Property 1.
Proof: The effect arises when Y is in AC(X, r) but no more in AC(X, r̃). Con-
sider Y ⊂ AC(X, r), then supp(X, r) − supp(X ∪ Y, r) ≤ δ. Adding the terms
|Dis(X, r̃)| and |Dis(Y, r̃X)| to this inequality, we get:

supp(X, r) − |Dis(X, r̃)| − (supp(X ∪ Y, r) − |Dis(X, r̃)| − |Dis(Y, r̃X)|)
≤ δ + |Dis(Y, r̃X)|

Lemmas 1 and 2 enable to write supp(X, r̃) − supp(X ∪ Y, r̃) ≤ δ + Dis(Y, r̃X)
and we recognize Inequality 2. Thus Y ⊂ AC(X, r) implies Y ⊂ AC(X, r̃):
Definition 5 is sound in presence of missing values and Property 1 holds.

This property assures to perfectly recover items in the almost-closures in the
presence of missing values otherwise they may come out. In our example, this
method fully recovers on r̃ the condensed representation of reference (given in
the right part of Table 1).

4 Experiments and Results

The purpose of this section is to compare condensed representations achieved by
our corrections versus condensed representations obtained without corrections.
Experiments are performed with our prototype MVminer which extracts δ-free
patterns with their almost-closures according to our corrections (MVminer can
be seen as an instance of the level-wise search algorithms presented in [10]).

4.1 The Framework of the Experiments

The data base without missing values is the reference data base and it is denoted
r. Let us call reference condensed representation the condensed representation
of reference performed on r. Then, some missing values are randomly introduced
in r and the data base with missing values is noted r̃. We are going to discuss
of the condensed representation of r̃ obtained by the elementary method (i.e.
ignore the missing values) and the one achieved with our corrections (i.e. run-
ning MVminer on r̃) compared to the reference condensed representation. For
the following, our method with corrections is simply called MVminer and the
elementary is called “the usual method”. Used measures are: pollution of δ-free
patterns and recovery of items of almost-closures, differences on the values of
support between the usual method and MVminer, pollution on 0-free patterns
according to the rate on missing values.

Experiments have been done both on benchmarks (usual data bases used
in data mining and coming from the University of Irvine [11]) and on a real
database provided by the European Organization of Research and Treatment
of Cancer (EORTC). All the main results achieved are similar and, due to the
lack of space, we choose to present here only results on EORTC data base (the
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results on most data bases are available in [15]). EORTC has the advantage to
be a real data base on a problem for which physicians have a great interest. This
data base gathers 576 people suffering from Hodgkin’s disease, a gland cancer.
There are 26 multi-variate attributes, which bring 75 highly correlated binary
items.

The protocol of experimentation suggests the use of three parameters: the
rate of artificially introduced missing values, the minimum support used in the
extraction and the value of δ. Actually, experiments show that only the variation
of δ produces changes of tendency [15]. So, we present, below, the results on
experiments with 10% of missing values per attribute (randomly introduced), a
minimum support of 20%. δ varies from 0 to 20 transactions (i.e. 0 to 3.5%).

4.2 Correction on Almost-Closures

The phenomena described in this section are linked to the effect of missing values,
previously described Section 2.3. Figure 2 (on the left) depicts the proportion
of δ-free patterns obtained in r̃ by the usual method and not belonging to the
reference condensed representation (i.e. pollution of δ-free patterns). The usual
method undergoes a pollution of 50% as soon as the first values of δ (1.5% or 8
transactions). It means that there are a lot of meaningless patterns which are,
obviously, impossible to distinguish from the true patterns. Such a result shows
a great interest of MVminer: we note there is no pollution with MVminer for
any δ value. It is clear that this result was expected owing to the property given
in Section 3.2.
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Fig. 2. Drawbacks of the usual method

Figure 2 (on the left) indicates that the level of pollution with the usual
method stays low when δ = 0 or is very small and then we can imagine using this
method. Figure 2 (on the right) deletes this hope: items of almost-closures are not
recovered. Even with high values of δ, only half of the items of almost-closures are
found. With corrections, MVminer fully recovers all items of almost-closures.
This shows that it is impossible to trust condensed representations given by the
usual method even with a low value of δ and thus highlights again the advantages
of MVminer.
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4.3 Support of δ-Free Patterns and Recovery of 0-Free Patterns
According to the Rate of Missing Values

Figure 3 (on the left) compares errors on values of the supports of δ-free pat-
terns between the usual method and MVminer. Error is about twice as low as
with MVminer. Such an improvement may be precious to compute measures of
interestingness on rules.
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Let us consider now the pollution brought by the usual method on the con-
densed representation made up of 0-free patterns (a very often used condensed
representation) according to the rate of missing values. This pollution is the
proportion of obtained patterns and not belonging to the reference condensed
representation. Missing values were introduced on each item according to the
percentage indicated on Figure 3. This figure (on the right) shows a high value
of pollution as soon as the first missing values are introduced (50% of mean-
ingless patterns). With a lot of missing values, pollution decreases because few
patterns are recovered but the condensed representation is groundless. Let us
recall that there is no pollution on patterns with MVminer (cf. Section 4.2).

5 Conclusion and Future Work

We have presented the damages due to missing values on condensed representa-
tions based on δ-free patterns and closed patterns which are the most common
condensed representations. Without processing, such condensed representations
are unreliable in presence of missing values which prevent the multiple uses of
extracted patterns. Our analysis clarifies the effects of missing values on δ-free
patterns and their almost-closures. We have proposed corrections and a sound
new definition of the almost-closure which is a generalization of the usual one
and fully compatible with this one. These corrections deal with missing values
and recover initial patterns with their almost-closures. The corrections never in-
troduce pollution on patterns. As they check the property of anti-monotonicity,
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these corrections are effective even in the case of huge, dense and/or highly cor-
related data. Experiments on real world data and benchmarks show that it is
impossible to use trustingly condensed representations without corrections (e.g.
high level of pollution on δ-free patterns even with low rates of missing values)
and confirm the relevance of the corrections.

A straightforward further work is to use these condensed representations suit-
able for missing values to determine reliable rules to predict missing values. Such
condensed representations have good properties for this task (see for instance
[2]). Our collaborations in medicine provide excellent applications.
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