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Abstract. Extraction of named entity relations in textual data is an im-
portant challenge in natural language processing. For that purpose, we
propose a new data mining approach based on recursive sequence min-
ing. The contribution of this work is twofold. First, we present a method
based on a cross-fertilization of sequence mining under constraints and
recursive pattern mining to produce a user-manageable set of linguis-
tic information extraction rules. Moreover, unlike most works from the
state-of-the-art in natural language processing, our approach does not
need syntactic parsing of the sentences neither resource except the train-
ing data. Second, we show in practice how to apply the computed rules
to detect new relations between named entities, highlighting the interest
of hybridization of data mining and natural language processing tech-
niques in the discovery of knowledge. We illustrate our approach with
the detection of gene interactions in biomedical literature.

Keywords: Sequential Data, Recursive Mining, Named Entity Rela-
tions, Pattern Discovery, Natural Language Processing.

1 Introduction

Due to the explosion of available textual data, text mining and Information Ex-
traction (IE) from texts have become important topics of study in recent years.
In particular, detection of relations between named entities is a challenging task
to automatically discover new relationships in texts. The detection of gene inter-
actions in biomedical texts and the discovery of companies relations (sell/buy) in
newspapers belong to the scope of that problem. Some previous works use hand-
crafted linguistic IE rules for that task which is time consuming [7,5]. Other
methods based on Machine Learning (ML) techniques [10] give good results but
run as a “black box”: their outcomes are not really understandable by a user
and Natural Language Processing (NLP) cannot fully take benefit from them.

A key idea of this paper is to propose a cross-fertilization of data mining and
NLP techniques to profit from the advantages of the two fields. More precisely, we
propose a method based on recursive sequential pattern mining with constraints
coming from the NLP field to tackle the problem of the discovery of named
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entity relations. Sequence mining, in particular sequential pattern mining [1],
is a well-known data mining technique that allows to extract regularities in a
sequence database. The recursive pattern mining [4] and the constraint-based
paradigm [14] enable to give prominence to the most significant patterns. As we
will see (Section 2), these techniques have suitable properties for our goal.

The contribution of this work is twofold. First, we propose a recursive pattern
mining approach based on constrained sequential patterns to produce a user-
manageable set of linguistic IE rules. The recursive sequential pattern mining
enables the effective mastering of the number of discovered patterns that are re-
turned. If recursive mining has already been used in the context of itemsets (i.e.,
data described by items), we show how such a method can deal with sequential
data and we prove new properties on recursive pattern mining on sequences.
Second, we show how to apply sequential patterns as linguistic IE rules to de-
tect new relations in texts. We illustrate our approach with the detection of gene
interactions in biomedical literature. With regards to the issue of the detection
of named entity relations, the main advantages of our approach with respect to
existing ones are that the results are automatically discovered and easily under-
standable by a human. To the best of our knowledge, it is the first approach
combining sequential pattern mining methods and linguistic information.

The paper is organized as follow. Section 2 presents the background in data
mining and existing approaches that tackle the problem of the detection of named
entity relations. Section 3 gives the main contributions of this paper. Espe-
cially, we describe the discovery of linguistic IE rules to detect relations between
entities. Section 4 presents a case study about IE rules for gene interaction
detection.

2 Background

This section provides the background on sequential pattern mining and recursive
mining. Related work on named entity relation detection is then presented.

2.1 Sequential Pattern Mining under Constraints

Sequential pattern mining [1] is a data mining technique that aims at discovering
correlations between events through their order of appearance. Sequential pat-
tern mining is an important field of data mining with broad applications (e.g.,
biology, marketing, security) and there are many algorithms to extract frequent
sequences [19,15,22].

In the context of sequential patterns extraction, a sequence is an ordered list of
distinct literals called items. A sequence S is denoted by 〈i1i2 . . . in〉 where ik, 1 ≤
k ≤ n, is an item. Let S1 = 〈i1i2 . . . in〉 and S2 = 〈i′1i′2 . . . i′m〉 be two sequences.
S1 is included in S2 if there exist integers 1 ≤ j1 < j2 < . . . < jn ≤ m such that
i1 = i′j1 , i2 = i′j2 , . . ., in = i′jn

. S1 is called a subsequence of S2. S2 is called a
super-sequence of S1, denoted by S1 � S2. An extracted sequential pattern, S1, is
maximal if there is no other extracted sequential pattern, S2, such that S1 � S2.
A sequence database SDB is a set of tuples (sid, S) where sid is a sequence ID
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and S a sequence. A tuple (sid, S) contains a sequence T , if T is a subsequence
of S. The support of a sequence T in a sequence database SDB is the number of
tuples in the database containing T : supSDB(T ) = |{(sid, S) ∈ SDB|(T � S)}|
where |A| represents the cardinality of set A1. Note that we do not mention
the database when it is clear from the context: sup(T ). In this paper, we use
sequences of items for sake of simplicity and because it is enough for the case
study. However, this approach can be straightforwardly generalized to sequences
of itemsets.

The constraint-based pattern mining framework is a powerful paradigm to
discover new highly valuable knowledge [13]. Constraints provide a focus on the
most promising knowledge by reducing the number of extracted patterns to those
of potential interest for the user. More precisely, constraint-based mining task
selects all the sequential patterns included in SDB and satisfying a predicate
which is called constraint. There are a lot of constraints to evaluate the relevance
of sequential patterns. The most well-known example is the frequency constraint.
Given a minimum support threshold minsup, the problem of frequent sequential
pattern mining is to find the complete set of sequential patterns whose support is
greater than or equal to minsup. There are many other constraints highlighting
the best sequential patterns with respect to the user objectives [14]. In this work,
we will see that we use both syntactic constraints and constraints coming from
linguistic information.

2.2 Recursive Pattern Mining

Recursive pattern mining [4] is a process that gives prominence to the most sig-
nificant patterns and filters the specific ones. The key idea of recursive pattern
mining is to repeat the pattern mining process on the output in order to re-
duce it until few and significant patterns are obtained. That recursive process is
ended when the result becomes stable. The final recursive patterns bring forward
information coming from each mining step. More precisely, a recursive pattern
produces a k-summary (i.e., a set with at most k patterns) summarizing the
data according to a measure (e.g., frequency, growth rate) where k is a given
number. One of the advantages of recursive pattern mining is that the number of
returned frequent patterns is well mastered. If recursive mining is already used
with item data [4], to the best of our knowledge, we propose here the first use
on sequential data. Such a use requires to demonstrate properties on sequential
data and Section 3.5 is devoted to this task.

2.3 Related Work

Several approaches have been widely applied to extract knowledge from texts:
NLP, in particular information extraction, and ML.

IE methods need linguistic resources such as grammars. That kind of ap-
proaches apply linguistic IE rules to extract information [7,5]. However, the
1 The relative support is also used: supSDB(T ) =
|{(sid, S) s.t. (sid, S) ∈ SDB ∧ (T � S)}|

|SDB| .
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resources are very often handcrafted. Those methods are thus time consuming
and very often devoted to specific corpus. In contrast, ML methods, for example
support vector machines or conditional random fields [10], are less time consum-
ing than IE methods. They give good results but they need many features and
their outcomes are not really understandable by a user and not usable in NLP
systems as linguistic patterns.

A good trade-off is a combination of IE and ML techniques which aims at
automatically learning the linguistic IE rules [12,18]. However in most cases the
learning process is done with a syntactic parsing of the text (shallow parsing
or deep parsing). Therefore, the quality of the learned rules is relied on results
of syntactic process which is currently not often a reliable process. Unlike those
methods, our proposed approach does not need syntactic parsing of the sentences
neither resource except the training data.

Some works [8] do not use syntactic parsing and learn surface patterns us-
ing sequence alignment of sentences to derive ”motifs”. One drawback of that
approach is that the sequence alignment implies that patterns are learned with
contiguous words. An inexact matching is nevertheless used to apply the pat-
terns on the application corpus. Other works [9] implicitly uses sequence mining
in order to compute information extraction rules. However, the number of pat-
terns (i.e., IE rules) is not well mastered and thus they cannot be presented to
an expert. Using n-grams is another technique very widespread to automatically
extract patterns. The drawbacks of n-grams is that the size of the extracted pat-
terns is set for all patterns to n and the elements in patterns must be contiguous.
Moreover n-gram can be seen as a specific instance of sequential pattern. Unlike
n-grams, in sequential pattern mining, discovered patterns can have different
sizes, and items within sequential patterns are not necessarily contiguous.

3 Recursive Sequence Mining to Discover Named Entity
Relations

This section presents the discovery of patterns as linguistic IE rules to detect
relations between named entities in texts. First, an overview of the approach is
given. Second, the use of sequential pattern mining for the detection of named
entity relations is explained. Third, linguistic constraints are discussed. Fourth,
the algorithm is presented. Finally properties about the recursive pattern mining
step are proven.

3.1 Overview

The main idea of our approach is to extract the frequent patterns satisfying user-
defined constraints. As the order of words in texts is important, our approach
is based on sequential pattern mining which aims at discovering correlations
between events through an ordered relation. The order of words within the sen-
tence corresponds to the ordered relation to supply sequential pattern mining.
Some linguistic constraints (cf. Section 3.3) are used in order to drive the mining
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process towards the user objectives. Even if the number of produced patterns is
reduced thanks to the constraint, the output still remains too large for individual
and global analysis by the end-user. That is why a recursive pattern mining step
is performed in order to give prominence to the most significant patterns and to
control the output size. That step needs that important properties on recursive
pattern mining (cf. Section 3.5) are proven. In addition to usual evaluations by
using Precision and Recall measures, Section 4 shows that this small number of
computed sequential patterns enables a validation by linguists.

3.2 Sequential Pattern Mining for Named Entity Relations

For the extraction of sequential patterns as linguistic IE rules, the database
is built from texts which contain relations and where the named entities are
identified and replaced by the specific item Named Entity. In order to avoid
problems introduced by the anaphoric structures [23], we consider sequences
containing a relation, i.e. a verb or a noun, and at least two named entities.

The choice of the support threshold minsup is a well-known issue in data
mining. We note in our applications that some interesting words for named
entity relation detection are not very frequent so that we set a low value of
minsup. As a consequence, a huge set of patterns is discovered and it needs to
be filtered in order to return only interesting and relevant patterns.

3.3 Linguistic Constraints

In pattern mining, the constraints allow to precisely define the user interest.
The most commonly used constraint is the constraint of frequency (minsup)
because it satisfies suitable mining properties. However, it is possible to use
different constraints in conjunction to the frequency [13]. In our work, we use
mainly two linguistic constraints on sequential patterns to discover named entity
relations.

The first constraint is that the pattern must contain two named entities (C2ne).
The set SAT (C2ne) represents the set of patterns that satisfy C2ne:
SAT(C2ne) = {S = 〈i1i2 . . . im〉 | |{j | j ∈ 1 . . .m ∧ ij = Named Entity}| ≥ 2}.
Indeed, the targeted relation is between at least two named entities.

The second constraint is that the pattern must contain a verb or a noun (Cvn)
in order to express a named entity relation. The set SAT (Cvn) represents the set
of patterns that satisfy Cvn: SAT (Cvn)={S =〈i1i2 . . . im〉|∃j, verb(ij)ornoun(ij)}
where verb(ij) (resp. noun(ij)) is a predicate that returns true if ij is a verb (resp.
noun).

Note that other linguistic constraints can be added to give more precision with
respect to the kind of searched relations. In the following, for the sake of clarity,
all constraints are grouped in only one constraint CG and SAT (CG) is the set of
patterns satisfying CG. From the constraint-based paradigm, the C2ne and Cvn

constraints belong to the category of regular expression constraints introduced
by [6].
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3.4 Algorithm

Algorithm 1 presents the whole process to discover named entity relations.
Firstly, the text is POS tagged (Step 1), i.e., each word is replaced by its lemma
and linguistic informations. That step defines the items of the sequence database.
The POS tagged text is then sliced in sequences (Step 2). The type of slice
size (a sequence) can be for example the phrase, the whole sentence or the
paragraph.

Sequential pattern mining is then applied (Step 3) to find the frequent se-
quential patterns in the database. The patterns are then filtered with respect
to user-defined constraints (Step 4). Method CheckConstrainsts prunes the se-
quential patterns that do not satisfy CG. Therefore, the constrainedPatterns set
contains all frequent sequential patterns that satisfy CG. In order to avoid the
redundancy between patterns, only maximal patterns (cf. Section 2.1) are kept
(Step 5). The computation of the maximality is done in post processing because
it is not time consuming. It takes less than 2 minutes. However that phase can
be done in the sequential pattern mining step (Step 3).

Even if the new set of sequential patterns, maximalConstrainedPatterns , is
significantly smaller than the complete set sequencePatterns, it can still be
too large to be analyzed and validated by a human user. Therefore we use
recursive pattern mining [4] to filter very specific patterns. As we are inter-
ested to keep some patterns for each relation expression, i.e., for each verb or
noun, Xi, the set maximalConstrainedPatterns is thus divided into several sub-
sets S(Xi) (Step 6)2. A subset S(Xi) is the set of all sequential patterns of
maximalConstrainedPatterns containing the item Xi. More formally, S(Xi) =
{S ∈ maximalConstrainedPatterns | 〈Xi〉 � S}. Note that Xi are elements la-
beled as a verb or a noun. The most k (k > 1) representative elements for each
S(Xi) are then computed. Each subset S(Xi) is then recursively3 mined with a

support threshold, min supR, equal to max{ |S(Xi)|
k

, 2} in order to extract fre-
quent sequential patterns satisfying CG (Steps 7–14). It means that the extracted
sequential patterns become the sequences of the new database to mine. That pro-
cess ends when the number of extracted patterns is less than or equal to k. Some
properties about the recursive pattern mining step are given in Section 3.5.

At the end of the process, the number of sequential patterns is well-mastered.
Indeed, recursive mining goes on until the number of sequential patterns is less
than or equal to k, and as recursive mining always stops (Theorem 1), the number
of sequential patterns for each subset is thus less than or equal to k. Therefore
the number of returned sequential patterns is less than or equal to n × k where
n is the number of subsets S(Xi) in SAT (CG). Note that k is set a priori by the
user so that sequential patterns can be analyzed by a human. The sequential
patterns are then validated by the user and considered as linguistic IE rules for
the detection of relations between named entities.

2 The S(Xi) are not necessarily disjoint.
3 The recursive process is given in iterative writing in Agorithm 1.
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Algorithm 1. Discovery of Named Entity Relation Patterns
Input: text: text ; minsup: support threshold ; slice type: scope of a sequence in text;

CG: constraints ; k: recursive mining threshold
Output: patterns, set of returned frequent sequential patterns
Method:
1: POSTaggedText := POS Tagging(text)
2: textSDB := Slicing(POSTaggedText , slice type)
3: frequentSequentialPatterns := SequenceMining(textSDB , minsup)
4: constrainedPatterns := CheckConstrainsts (frequentSequentialPatterns , CG)
5: maximalConstrainedPatterns := Maximal(constrainedPatterns )
6: patternSets := Split(maximalConstrainedPatterns )
7: patterns := ∅
8: for all S(Xi) ∈ patternSets do
9: while |S(Xi)| > k do

10: min supR := max{ |S(Xi)|
k

, 2}
11: FP := SequenceMining(S(Xi), min supR)
12: CP := CheckConstrainsts(FP)
13: S(Xi) := Maximal(CP)
14: end while
15: patterns := patterns ∪ S(Xi)
16: end for

3.5 Properties of Recursive Pattern Mining

In this section, important properties about recursive pattern mining are demon-
strated. These properties are new in the context of sequential data.

The first property is about the frequency of the returned patterns. For each
subset S(Xi), the k or less extracted sequential patterns returned after recursive
pattern mining are frequent in the sequence database textSDB. In other words,
they belong to the complete set of frequent sequential patterns in textSDB,
frequentSequentialPatterns, with respect to minsup (Property 1).

Property 1. Let S(X) be a set of frequent sequential patterns in textSDB that
contain X . The sequential patterns of S(X) after recursive pattern mining are
frequent in textSDB with respect to minsup.

Proof. The proof is conducted recursively on the number of recursive pattern
mining steps.

Base case: No recursive pattern mining. All elements of S(X) are frequent in
textSDB with respect to minsup (Step 3 of Algorithm 1).

Hypothesis: We assume that after j recursive pattern mining steps all elements
of S(X) are frequent in textSDB with respect to minsup. Let Sj(X) be the set
of sequential patterns after j recursive pattern mining steps.

Recursive Case: Let Sj+1(X) be the set of sequential patterns after j + 1
recursive pattern mining steps and p ∈ Sj+1(X). It implies that p is frequent in
Sj(X) and thus there exists at least one element in Sj(X), e, such that p � e.
The pattern e is frequent in textSDB (recursive hypothesis). Thanks to the anti-
monotonicity of the support, p is thus also frequent in textSDB. 
�
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We prove that the recursive pattern mining stops (Theorem 1). Unfortunately,
the proof cannot be based on the strictly decreasing of the number of patterns
during the recursive pattern mining, because that number may not decrease for
some steps. That is why we base the proof according to the size of the largest
maximal frequent sequential patterns because it strictly decreases during the
recursive pattern mining (Property 2).

Property 2. Let Sj(X) be the result set of sequential patterns recursively mined
at step j of the recursive pattern mining (Steps 7-14) and Sj+1(X) the result
set at step j + 1 then: ∀p ∈ Sj+1(X) |p| < max{|pl| | pl ∈ Sj(X)}
where |p| is the size of the pattern, i.e., the number of items in p.

Proof. Let p be an element of Sj+1(X): p ∈ Sj+1(X). Let Ep be the set of all
elements of Sj(X) such that: ∀e ∈ Ep p � e.

The support threshold for the sequential mining (Step 11) is greater than
or equal to 2 (Step 10) and p is frequent in Sj(X). It implies that |Ep| ≥ 2.
However, the elements of Sj(X) are maximal (Step 13), so that the elements of
Ep are also maximal ( indeed Ep ⊆ Sj(X) ) and thus p cannot be equal to any
element of Ep: ∀e ∈ Ep p � e ( i.e., p � e and p �= e) ⇒ ∀e ∈ Ep |p| < |e|
and ∀e ∈ Ep |e| ≤ max{|pl| | pl ∈ Sj(X)} ⇒ |p| < max{|pl| | pl ∈ Sj(X)} 
�
Theorem 1. Let k be an integer, k > 1. The recursive pattern mining of S(X)
stops (cf Algorithm 1).

Proof. The proof is conducted recursively on the size of patterns of S(X).
Base case: the size of patterns of S(X) is 0. The number of patterns in S(X)

is thus 0. In addition, 0 < k and thanks to Step 9 of Algorithm 1, the recursive
pattern mining stops.

Hypothesis: We assume that the recursive pattern mining stops when the size
of patterns of S(X) is lower than or equal to T .

Recursive Case: the size of patterns of S(X) is lower than or equal to T + 1.
Thanks to Property 2, after one application of the recursive pattern mining on
S(X) we know that S(X) contain patterns such that their size is lower than
or equal to T . The recursive pattern mining thus stops thanks to the recursive
hypothesis. 
�

4 Case Study: Discovery of Gene Interaction Patterns

This section presents the discovery of frequent sequential patterns as linguistic
information extraction rules for gene interaction detection. The named entities
are the genes. Experiments are conducted on texts from biological and medical
literature. A linguistic analysis of this case study is given in [3].

4.1 Training Dataset

We merge two different corpora containing genes and proteins to build the train-
ing dataset. The first corpus contains sentences from PubMed abstracts, anno-
tated by Christine Brun. It contains 1806 annotated sentences. That corpus is
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available as a secondary source of learning tasks “Protein-Protein Interaction
Task (Interaction Award Sub-task, ISS)” from BioCreAtIvE Challenge II [10].
The second corpus contains sentences of interactions between proteins annotated
by an expert. That dataset, containing 2995 sentences with gene interactions, is
described in [16]. The training corpus thus contains 4801 sentences.

A POS tagging is then performed on the merged corpus using the treetagger
tool [17]. The sentences are then split into sequences to build the database. For
example, let us consider two sentences that contain gene interactions:

– “Here we show that <Gene SOX10>, in synergy with <Gene PAX3>, strongly
activates <Gene MITF > expression in transfection assays.”

– “The <Gene Menin>-<Gene JunD> interaction was confirmed in vitro and
in vivo.”

Those sentences generate two sequences4:

– 〈 here@rb we@pp show@vvp that@in/that Named Entity ,@, in@in synergy@nn
with@in Named Entity ,@, strongly@rb activate@vvz Named Entity
expression@nn in@in transfection@nn assay@nns .@sent 〉

– 〈 the@dtNamed Entity -@:Named Entity interaction@nnbe@vbdconfirm@vvn
in@in vitro@nn and@cc in@in vivo@rb .@sent 〉

The gene names, i.e., the named entities, are replaced by a specific item, Named
Entity, and the other words are replaced by the combinations of their lemma and
their POS tag. The order relation between items in a sequence is the order of
words within the sentence. For experiments, the sequences of the database are
the sentences where each word is replaced by the corresponding item. It means
that slice type is the whole sentence.

4.2 Recursive Sequential Pattern Mining

For the sequential pattern mining, we set a support threshold minsup equal
to 10. With that threshold some irrelevant patterns are not taken into account
while many patterns of gene interactions are discovered. We conducted other ex-
periments with greater minsup values (15 and 20). With those thresholds some
relevant patterns for interaction detection are lost. The number of frequent se-
quential patterns that are extracted is high. More than 32 million frequent se-
quential patterns are discovered. Although the number of extracted patterns is
high the extraction of all frequent patterns spends only 15 minutes. The extrac-
tion tool is dmt4 [11].

The application of constraints significantly reduces the number of sequential
patterns. Indeed, the number of sequential patterns satisfying the constraints is
about 65, 000. However, that number is still prohibitive for analysis and valida-
tion by a human expert. Recall that the application of constraints is not time
consuming (couple of minutes).
4 ′rb′, ′pp′, . . . after ′@′ are tags given by treetagger, for example : ′rb′ means adverb,

′pp′ means personal pronoun.



Recursive Sequence Mining to Discover Named Entity Relations 39

The sequential patterns, which are computed in the previous step, are divided
into several subsets. The recursive pattern mining of each subset exhibits at
most k sequential patterns to represent that subset. In this experiment, we set
the parameter k to 4. We get 515 subsets (365 for nouns, 150 for verbs). At
the end of the recursive pattern mining, there remain 667 candidate sequential
patterns that represent interactions. That number, which is significantly smaller
than the previous one, guarantees the feasibility of an analysis of those patterns
as linguistic IE rules by an expert. The recursive pattern mining of those subsets
is not time consuming. It takes about 2 minutes.

The 667 remaining sequential patterns were analyzed by two users. They val-
idated 232 sequential patterns for interaction detection in 90 minutes. It means
that 232 sequential patterns represent several forms of interactions between genes.
Among those patterns, some explicitly represent interactions. For example,
〈Named Entity deplete@vvn Named Entity .@sent〉, 〈activation@nn of@in
Named Entity by@in Named Entity .@sent〉 or 〈Named Entity be@vbd inhibit@vvn
by@in AGENE@np .@sent〉 describe well-known interactions (inhibition, activa-
tion). Other patterns represent more general interactions between genes, meaning
that a gene plays a role in the activity of another gene for instance 〈Named Entity
involve@vvn in@inNamed Entity .@sent〉or 〈that@in/thatNamed Entity play@vvz
role@nn in@inNamed Entity .@sent〉.Most of remainingpatterns representmodal-
ities or biological context.

The validated sequential patterns are linguistic IE rules that can be used on
biomedical texts to detect interactions between genes. Note that the application
of those patterns do not need a syntactic analysis of the sentence.

4.3 Detection of Gene Interactions

Following the case study, we have conducted some experiments in order to eval-
uate the quality of the sequential patterns found in the previous section from a
quantitative point of view. For that purpose, we consider three sets of data well-
known in literature: GeneTag from the data set Genia [20], BioCreative from [21]
and AIMed from [2]. In those datasets, the names of genes or proteins are labeled
as named entities. In each corpus, we randomly took 200 sentences and tested
whether the linguistic patterns can be applied. For each sentence, we manually
measure the performance of linguistic sequential patterns to detect those inter-
actions. Note that we also carried out a POS tagging of those sentences in order
to correctly apply the pattern language. Table 1 presents the scores of the appli-
cation of the patterns as linguistic IE rules: Precision, Recall and f -score5. The
scores are similar in the three corpora. Moreover, the precision is very good and
the recall is correct. Further investigations with different values of the parameter
k are a promising issue: indeed, higher k is, more specific patterns are.

Note that the scope of the extracted linguistic IE rules in the experiments
is the whole sentence. That scope may introduce ambiguities in the detection
of interactions and thus false positives when more than two genes appear in

5 The used f -score function is : f -score = 2 × Precision × Recall
P recision + Recall

.
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Table 1. Tests on several corpora

Corpus Precision Recall F-Score

BioCreative [21] 0.92 0.767 0.836

GeneTag [20] 0.909 0.8 0.851

AIMed [2] 0.93 0.84 0.88

the same sentence. Several cases are possible: when several binary interactions
are present in the sentence, when the interaction is n-ary (n ≥ 3) or when
an interaction is found with a list of genes. The case of n-ary interactions can
be solved with a training dataset containing n-ary interactions. The other two
cases can be treated by introducing limitations of pattern scope, for example
cue-phrases (e.g., but, however). False negatives mainly depend on the absence
of some nouns or verbs of interaction in the patterns. For example, the noun
“modulation” is not learned in a pattern whereas the verb “modulate” appears.
This suggests that the use of linguistic resources (e.g., lexicon or dictionary) can,
manually or semi-automatically, improve patterns and thus interaction detection.

5 Conclusion and Future Work

This paper proposes a method based on a cross-fertilization of sequence mining
under constraints and recursive pattern mining to produce a user-manageable set
of linguistic information extraction rules, such as the discovery relations between
named entities. The constraints enable to drive the mining process towards the
user objectives by filtering irrelevant patterns. The recursive sequence mining
allows the effective mastering of the number of discovered patterns that are
returned. In addition, we prove important properties on recursive pattern mining
on sequences. To the best of our knowledge, it is the first approach combining
sequential pattern mining methods, constraints and linguistic information.

The case study shows the feasibility and the interest of our method to discover
the named entity relations. We have conducted experiments on biomedical textual
data to detect gene interactions. Our proposed approach does not need syntactic
parsing neither resource except the training data. In addition, the patterns as lin-
guistic IE rules are understandable by a user. From a qualitative point of view, it
is interesting to note that the subcategorization of the verbs given by the POS tag-
ging indicates the passive or active verbs and identifies the direction of the relation.
Prepositions can also convey that kind of information, which is precious when the
pattern does not contain a verb. Promising future work consists of designing more
complex linguistic constraints and pushing them within the mining process.
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