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Abstract

Current analyses of co-expressed genes are often based on global approaches such as clustering or bi-clustering.

An alternative way is to employ local methods and search for patterns – sets of genes displaying specific

expression properties in a set of situations. The main bottleneck of this type of analysis is twofold –

computational costs and an overwhelming number of candidate patterns which can hardly be further exploited.

A timely application of background knowledge available in literature databases, biological ontologies and other

sources can help to focus on the most plausible patterns only. The paper proposes, implements and tests a

flexible constraint-based framework that enables the effective mining and representation of meaningful

over-expression patterns representing intrinsic associations among genes and biological situations. The

framework can be simultaneously applied to a wide spectrum of genomic data and we demonstrate that it allows

to generate new biological hypotheses with clinical implications.

Keywords: Functional genomics, SAGE, local pattern, background knowledge, gene ontology, biomedical

literature, constraint.
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Introduction

The generation of very large gene expression databases by high-throughput technologies like

microrarray [1] or SAGE [2] calls for similarly high-throughput exploration of possible functional links

between genes and gene products. The link analysis is based upon similar expression properties, as well as

possible relationships between co-expression patterns and sub-sets of biological situations.

Various techniques have been used for exploring such relationships, including global techniques like

hierarchical clustering or K-means, or local pattern extraction such as association rule discovery

(ARD) [3–6] or formal concepts [7].

Local patterns are groups of genes that harbor a specific expression property which can be over- or

under-expression, either related to a single baseline (more/less expressed in situation A than in situation

B) or related to the gene expression regime across multiple situations (more/less expressed in situation A

than across multiple other situations). They provide the biologist with a list of genes that, through the

”guilt by association” hypothesis [8], are supposed to vary together due to a genuine biological principle,

such as common function within the cell.

Extraction of local patterns is justified by the limitations of the global methods (see [3]) as well as by the

need to explore gene-to-gene relationships that would be too subtle (i.e. occurring in too small a number of

situations, or in very heterogeneous situations) for detection by global approaches.

One of the main drawbacks of every local pattern approach is the huge number of extracted patterns. This

is especially true in noisy data, such as transcriptomic data. At least three research directions can be

explored for solving this problem. The first one relies upon the use of fault-tolerant pattern extraction (see

e.g. [9]) – a difficult task whose tractability is to date still uncertain. The second direction tries to regroup

patterns through hierarchical clustering [10]. In this paper, we propose a third solution using external

sources to introduce constraints that focus on the most meaningful patterns. Different types of sources can

be used, including Gene Ontology and literature-based evidence extracted through text-mining.

A constraint is a function evaluating whether a pattern is interesting, and can be used to streamline the

pattern search. Gene expression data represent a new challenge for constraint-based pattern mining since

the overall complexity of exhaustive pattern search is exponential with the number of genes (i.e., items)

which itself is typically large. A simple approach can be decomposed into two distinct steps. Firstly, to

mine all potentially interesting patterns satisfying an anti-monotone constraint (e.g., the usual constraint

of minimum frequency) because this class of constraints can be efficiently pushed (to eliminate irrelevant

itemsets/sets of genes early and minimize the number of itemsets to be examined). Secondly, to filter the

resulting set of patterns by the remaining constraints. However, this näıve filtering approach performed by

an ordinary level-wise algorithm is intractable due to the huge number of patterns [11]. Existing scalable

techniques [12,13] are limited to particular kinds of constraints (closed patterns, δ-free patterns).

Integration of arbitrary background knowledge in the mining process in order to focus on the most

plausible patterns requires more powerful data mining techniques.

Background knowledge is available in relational and literature databases, ontological descriptions and other

sources. Its effective use in analysis and interpretation of expression data is a popular research topic
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nowadays. However, the main effort is aimed at clustering and consequent integration of biological

knowledge into the statistical data analysis framework. Background knowledge is typically used to

annotate the expression based clusters for statistically over-represented (or under-represented) terms or

categories [14,15]. The same knowledge can also be employed to directly cluster genes [16] or to perform

meta-clustering on pre-merged expression and external datasets [17]. Among the approaches distinct from

clustering, [18] converts gene annotations into relational logic features, while [19] uses text mining to filter

the most promising disease gene candidates. Recently an ARD-based approach has been proposed in which

the authors search for associations among several data sources based on co-occurrence [20]. The resulting

rules express e.g. a relation between a metabolic pathway and gene over(under)-expression in a group of

biological conditions.

In this paper we introduce and apply a more general depth-first search framework which is based on a rich

declarative language of primitive-based constraints enabling effective internal pruning and a condensed

output representation based on intervals. This framework is implemented within the constraint-based

pattern mining tool MUSIC (Mining with a User-SpecifIed Constraint). The first version of the tool was

described in [21], this paper extends it towards utilization of external sources and the depth-first search.

We demonstrate that our procedure leads to a very effective reduction of the number of patterns, together

with an “interpretation” of the patterns in the form of a list of words related to the function of the genes

involved in the pattern. To the best of our knowledge, there is no other constraint-based tool to efficiently

discover patterns from large data under a broad set of constraints linking the information distributed in

various knowledge sources. Using external constraints in the context of pattern mining as well as the

integration of internal and external constraints are therefore the main contributions of this paper.

Materials and Methods
Constraint-based pattern mining through several datasets

Usual data-mining tasks rarely deal with a single dataset. Often it is necessary to connect knowledge

scattered in several heterogeneous sources. In constraint-based mining, the constraints should effectively

link different datasets and knowledge types. In the domain of genomics, there is a natural need to derive

constraints both from expression data and descriptions of the genes and/or biological situations under

consideration. Such constraints require an analysis of various data types - transcriptome data and

background knowledge may be stored in the boolean, numeric, symbolic or textual format. This section

presents our framework (and the declarative language) enabling the user to set flexible and meaningful

constraints.

Let us consider the genomic mining context given in Figure 1. Firstly, the data involved include a boolean

transcriptome dataset also called internal data where the items correspond to genes, the transactions

represent biological situations and the binary values indicate gene over-expression. Secondly, external data

– a similarity matrix and textual resources – are considered. They summarize background knowledge that

contains various information on items (i.e., genes). This knowledge is transformed into a similarity matrix

and a set of texts. Each field of the triangular matrix sij ∈ [0, 1] gives a similarity measure between the
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items i and j. The textual dataset provides a description of genes. Each row of this dataset contains a list

of phrases characterizing the given gene. The mined patterns are composed of items of the internal data

(the corresponding transactions are usually also added). The external data are used to further specify

constraints in order to focus on meaningful patterns. In other words, the constraints may stem from all the

datasets (see the example of q in Figure 1, the experimental section provides examples of other constraints).

Let I be a set of items. A pattern is a non-empty subset of I. D is a boolean matrix composed of patterns

usually called transactions. The constraint-based mining task aims to discover all the patterns present in D
and satisfying a constraint q. A pattern X is present in D whenever it is included in at least one

transaction of D. A distinctive point of our framework is its flexibility. Constraints are freely built of a

large set of primitives representing a rich query language which allows to integrate various data/knowledge

sources and to develop iteratively meaningful constraints.

Table 1 provides the meaning of the primitives involved in q and also in the other constraints used in this

text. As primitives on external data are derived from different datasets, the dataset identification is another

parameter of the primitive (for clarity not shown in Table 1). The first part (a) of q addresses the internal

data and means that the biologist is interested in patterns having a satisfactory size (i.e., a minimal area).

Indeed, area(X) = freq(X)× length(X) is the product of the frequency of X and its length and means

that the pattern must cover a minimum number of situations and contain a minimum number of genes.

The other parts deal with the external data: (b) is used to discard ribosomal patterns (one gene exception

per pattern is allowed), (c) to avoid patterns with prevailing items of an unknown function and (d) to

ensure a minimal average similarity. Table 1 also indicates the values of these primitives in the context of

Figure 1. Our framework supports a large set of primitives, other examples of primitives with evident

semantics are {∧,∨,¬, <,≤,⊂,⊆,+,−,×, /, sum,max,min,∪,∩, \}. The only theoretical property which

is required on the primitives to belong to our framework is a property of monotonicity according to each

variable of a primitive [21]. The constraints of this framework are called primitive-based constraints. Let us

recall that the primitives and the constraints defined in [21] only address one boolean data set.

The framework is by no means restricted to the similarities and textual annotations discussed above. The

requirement of monotonicity allows a wide range of data sources. In the genomic domain one can also

implement constraints based directly on other resources such as interaction networks or lists of

transcriptional regulators.

MUSIC tool and its efficiency

We use the tool MUSIC [21,22] which discovers soundly and completely all the patterns satisfying a given

set of input constraints. The efficiency of MUSIC lies in its depth-first search strategy and a safe pruning

of the pattern space by pushing the constraints. The constraints are applied as early as possible. The

pruning conditions are based on intervals representing several patterns. Whenever it is computed that all

the patterns included in an interval simultaneously satisfy (or not) the constraint, the interval is positively

(negatively) pruned without enumerating all its patterns [21]. The output of MUSIC enumerates the

intervals satisfying the constraint. Such an interval condensed representation improves the output legibility
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and enables to easily compute the selectivity of the constraint. Selectivity is a proportion of patterns

satisfying the constraint, and constitutes one of its important characteristics.

We start with the key idea of the safe pruning process based on intervals. The idea is to exploit properties

of the monotonicity of the primitives on the bounds of intervals to prune them. This new kind of pruning

is called interval pruning. Given two patterns X ⊆ Y , the interval [X,Y ] corresponds to the set

{Z ⊆ I | X ⊆ Z ⊆ Y }. Figure 2 depicts an example with the interval [AB,ABCD] and the values of the

primitives sumsim and svsim.

Assume the constraint sumsim(X)/svsim(X) ≥ 0.25. As the values associated to the similarities are

positive, sumsim(X) is a function increasing with X. Thus sumsim(ABCD) is the highest sumsim value

for the patterns in [AB,ABCD]. Similarly, all the patterns of this interval have a higher svsim(X) value

than svsim(AB). Thereby, each pattern in [AB,ABCD] has its average similarity lower or equal than

sumsim(ABCD)/svsim(AB) = 0.2/1. As this fraction does not exceed 0.25, no pattern of [AB,ABCD]

can satisfy the constraint and this interval can be pruned. We say that this pruning is negative because no

pattern satisfies the constraint. In the same way, if the upper bound of the constraint on an interval [X,Y ]

increases the threshold, all the patterns in [X,Y ] satisfy the constraint. [X,Y ] is also pruned and this

pruning is named positive. For instance, assuming that sumsim(AB)/svsim(ABCD) ≥ 0.02, then all the

patterns in [AB,ABCD] satisfy the constraint.

In a more formal way, this approach is performed by two interval pruning operators b�c and d�e introduced

in [21]. The main idea of these operators is to recursively decompose the constraint to take into account

the monotone properties of the primitives and then to soundly prune intervals as depicted above. This

process works straightforwardly with all the primitives tackling several kinds of datasets. This highlights

the generic properties of our framework. Thereby, all the parts of the constraint q are pushed into the

mining step.

Let us show the usefulness of the interval pruning strategy of MUSIC. The experiment was conducted on a

2.2 GHz Pentium IV processor with Linux operating system and 3GB of RAM memory. For this purpose,

we compare MUSIC with its modification that does not prune. The modification, denoted MUSIC-filter,

mines all the patterns that satisfy the frequency threshold first, the other primitives are applied in the

post-processing step. We use two typical constraints needed in the genomic domain and requiring the

external data. These constraints and the time comparison between MUSIC and MUSIC-filter are given in

Figure 3. The results show that post-processing is feasible until the frequency threshold generates

reasonable pattern sets. For lower frequency thresholds, the number of patterns explodes and large

intervals to be pruned appear. The interval pruning strategy decreases runtime and scales up much better

than the comparative version without interval pruning and MUSIC becomes by orders of magnitude faster.

MUSIC prototype is available at [23].

SAGE data

The SAGE technique aims to measure the expression levels of genes in a cell population [2]. It is performed

by sequencing tags (short sequences of 14 to 21 base pairs (bps) which are theoretically specific of each
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mRNA). A SAGE library is a list of transcripts expressed at one given time point in one given biological

situation. Both the identity (assessed through a tag-to-gene complex process, [24]) and the amount of each

transcript is recorded. Analyzing such data is relevant since this SAGE data source has been largely

under-exploited as of today, although it has the immense advantage over microarrays to produce datasets

that can be directly compared between libraries without the need for external normalization. The human

transcriptome can be seen as libraries that would be performed in each and every biologically relevant

situations in the human body. This is clearly out of reach at the moment, and we deal in the present work

with 207 very different situations ranging from embryonic stem cells to foreskin primary fibroblast cells.

Biologists consider that useful knowledge about the transcriptome can be expressed as sets of genes and/or

sets of biological situations that have some remarkable properties. Co-regulated genes, also known as

synexpression groups, based on the guilt by association approach, are assumed to participate in a common

function, or module, within the cell. The 207 SAGE libraries were downloaded from the NCBI web site as

of October 2004 [25]. To eliminate putative sequencing errors, a pretreatment of the data described in [3]

was applied, giving a set of 125985 14 bp tags. Tags were identified thanks to Identitag [24], using RefSeq

mRNA sequences. The unambiguous tags (displaying a 1 to 1 tag to RefSeq relationship) were selected,

leaving a set of 11082 tags. A 207x11082 gene expression matrix was built. There is also its sub-matrix

which confines to the tags belonging to the minimal transcriptome [26]. It is based on 447 tags found and

we refer to it as the minimum transcriptome (expression) matrix. To apply efficient local set pattern

mining techniques on expression data, we must first identify and encode a specific gene expression

properties (in principle, several properties per gene could be encoded, e.g., over-expression and

under-expression). In this work, we decided to focus on over-expression. Thus if a gene is over-expressed in

a situation then there will be a 1 value in the corresponding Boolean matrix cell, otherwise the value is 0.

Both the matrices were binarized to encode the over-expression of each tag using the MidRange method

described in [3]. For a thorough discussion upon the impact of discretization see [10,27].

Background knowledge

The section on constraint-based pattern mining introduces two principal kinds of external datasets,

similarity matrices and textual files. The following three sections formalize the way in which they may be

built. We use two principal external data sources, freetexts and gene ontologies (GOs), and preprocess them

into the external datasets. In the area of freetexts we have been inspired mainly by [16,17]. Both of them

deal with the term-frequency vector representation which is a simple however prevailing representation of

texts. This representation allows for an annotation of a gene group as well as a straightforward definition

of gene similarity. In the area of gene ontologies we stem from [15], the gene similarity results from the

genes’ positions in the molecular functional, biological process or cellular component ontology.

However, alternative sources can also be used, e.g., [28] suggests an approach to discover links between

entities in biological databases. Information extracted from available databases is represented as a graph,

where vertices correspond to entities and edges represent annotated relationships among vertices. A link is

manifested as a path or a sub-graph connecting the corresponding vertices. Link goodness is based on edge
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reliability, relevance and rarity. Obviously, the graph itself or a corresponding similarity matrix based on

the link goodness can serve as an external knowledge source.

Texts and their preprocessing

To access the gene annotation data for every tag considered, RefSeq identifiers were translated into

EntrezGene identifiers [29]. The mapping approached 1 to 1 relationship. There were only 11 unidentified

RefSeqs, 24 RefSeqs mapped to more than 1 id and 203 ids appeared more than once. Knowing the gene

identifiers, the annotations were automatically accessed through hypertext queries to the EntrezGene

database [25] and sequentially parsed by the method stemming from [18]. The non-trivial textual records

were obtained for 6302 ids which makes 58% of the total amount of 10858 unique ids (3926 genes had a

short summary, 5109 had one abstract attached at least).

The gene textual annotations were converted into the vector space model. A single gene corresponds to a

single vector, whose components correspond to a frequency of a single term from the vocabulary. This

representation is often referred to as bag-of-words [30]. The particular vocabulary consisted of all the

stemmed terms [31] that appear in 5 different gene records at least. The most frequent terms were

manually checked and insufficiently precise terms (such as gene, protein, human etc.) were removed. The

resulting vocabulary consisted of 19373 terms. The similarity between genes was defined as the cosine of

the angle between the corresponding term-frequency inverse-document-frequency (TFIDF) [30] vectors.

TFIDF representation statistically considers how important a term is to a gene record. A similarity matrix

for all the tags was generated. The underlying idea is that a high value of two vectors’ cosine (which means

a low angle among two vectors and thus a similar occurrence of the terms) indicates a semantic connection

between the corresponding gene records and consequently their presumable connection. Although this

model is known to generate false positive relations for the sake of utilization of the same terms in a

different context as well as false negative relations mainly because of synonyms, it is feasible and

surprisingly often faithful.

Gene ontology

The genes can also be functionally related on the basis of their GO terms. The rationale sustaining this

method is that the more GO terms the genes share, and the more specific the terms are, the more likely

the genes are to be functionally related. [15] defines a distance based on the Czekanowski-Dice formula, the

methodology is implemented within the GOProxy tool of GOToolBox [32].

The original RefSeq tag identifiers were translated into UniProt ids [33]. Out of 11082 tags there were 7670

known ids. As this set is too large to be processed by GOToolBox we confined the analysis to the

minimum transcriptome dataset, 366 RefSeqs could be translated here. The resulting ids have been used

by GoToolBox to generate two tag similarity matrices. For the biological process ontology there were 254

valid entries whereas 271 tags could be diagnosed within the molecular function ontology.

The GO terms themselves could be parsed from the records obtained in the previous subsection.
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Description of libraries

There is a short textual annotation of about 10 terms attached to each SAGE library. Although these

annotations represent very short documents, their vocabulary is quite compact. Consequently, they can be

processed in the same way as the tag textual documentation. In this case, when considering all the terms

that appear in 3 and more libraries the vocabulary consists of 83 terms. The situation similarity matrix

was also generated.

This similarity matrix does not refer to items but transactions. The constraints are not inferred from it

immediately but the matrix can be used in the latest phase of pattern annotation or filtration when the

focus is on the most homogeneous transaction sets only.

Results
General interaction among datasets

One of the basic questions rising prior to mining for the patterns is whether the datasets described above

are mutually interconnected. Can we say that a group of tags that are functionally similar also tends to be

co-expressed? Is there any relation between GO and textual definitions of similarity? Do similarly

annotated situations tend to have similar expression profiles? Although the interconnection between the

expression and external data is not a necessary condition to start the mining process, positive answers

would support the overall logic of future experiments – the application of the similarity constraints should

also lead to the compact expression data regions.

Correlation can serve as a general interconnection measure between expression and similarity data and also

similarity datasets themselves. In order to get the matrices of the same dimension, the tag correlation

matrix is derived from the expression data first. Then, its correlation with the tag similarity matrices is

calculated. An analogical process is applied when dealing with the situations. Figure 4 shows that there is

a statistically significant correlation among all the considered datasets. Nevertheless, the correlation values

suggest a weak relationship only. When comparing the individual values, SAGE seems to be most strongly

linked to the variance in situations. The interpretation may be such that SAGE deals with very different

biological conditions – normal, cancerous or AIDS samples from different organs and individuals of

different gender and age. They consequently vary in their expression profiles. The influence of tag

similarity seems to be less striking. The similarity measure based on texts does not seem to be less

valuable nor redundant with respect to the GO similarities.

Altogether this demonstrates the potential utility of using external sources for applying constraints, since

all data sets are neither fully redundant, nor entirely disconnected.

How many patterns are statistically relevant?

One obvious source for noise in transcriptomic data lies within the experimental limitations of the

techniques used. For example, SAGE is by essence a pooling strategy, and it has obvious limitations,

especially for low to medium-sequenced libraries. Second, there is an intrinsic biological variation in the

expression level of genes that has to be dealt with. Third, the binarization strategy cuts the expression
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values at a given threshold. Along with the use of formal concepts for generating patterns it can amplify

the original experimental noise [34]. We therefore wanted to estimate the amount of patterns that were

spurious, i.e., occurring randomly.

We generated 10 (pseudo)random datasets having the same properties as the original SAGE data: the

same size (11082×207), the same density (the number of 1s is 53511) and the same gene frequencies. The

gene frequencies are very uneven, some of the genes are over-expressed in one situation only, others can be

over-expressed in tens of situations. The roulette wheel technique [35] was used to keep the original gene

frequencies. The generated datasets were searched for patterns of large areas. As the genes are mutually

independent, all of the patterns are necessarily spurious. Figure 5 shows their mean number as the

function of the area and compares it with the number of patterns in the real dataset. The experiment

proved that the random datasets contain no (spurious) patterns longer than 3 and more frequent than 5.

The first spurious patterns (2.1±0.9) tend to appear when the frequency threshold is decreased by one, i.e.,

the constraints are length ≥ 4, freq ≥ 5 and thus area ≥ 20. These patterns contain exclusively the most

frequent genes. In the real dataset we observe 490267 patterns satisfying the same constraints. The

experiment suggests that we may encounter at least about half a million non-random and thus large

patterns.

The number of spurious patterns can also be theoretically estimated. Under assumption of gene

independence and considering the prior frequency of genes, the probability that the pattern occurs at

random is given by the multidimensional hypergeometric distribution:

ps =

l∏
i=1

(
ki

f

)(
m−ki

f−f
)(

m
f

) =

l∏
i=1

(
ki

f

)(
m
f

)
where l is the pattern length, f is the pattern frequency, m is the total number of situations and ki is the

frequency of i-th gene contained in the pattern. The probability ps concerns specific biological context, i.e.,

it gives the chance that the pattern appears in a single set of situations. The total spurious occurrence of

the pattern can be estimated as follows:

ns =

(
m

f

)
ps =

(
m

f

) l∏
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(
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f

)(
m
f

) =

∏l
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The more real pattern occurrence exceeds ns or the smaller its ps, the more surprising and interesting

pattern. The patterns of small area based on non-frequent genes can prove to be more interesting than

their larger counterparts composed of the frequent genes. Consequently, the best internal constraint would

be based on ns or ps respectively. However, this constraint is difficult to calculate repeatedly during the

pruning process. We have introduced it mainly to show that we deal with a large number of potentially

meaningful patterns and they can be found even among patterns of a limited area.

The theoretical analysis confirmed that the final number of large patterns is even larger than mentioned in

the experimental paragraph. Taken together these results clearly establish that the immense majority of

the patterns that were generated could not by any means be attributed to noise, and have to be considered
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as potential source of biologically-relevant information. As the biologists prefer output sets with tens of

patterns at most, one of the main tasks is to make this large number of potentially relevant patterns

accessible to the expert in a friendly and interactive way.

Internal and external constraints to reach a meaningful limited pattern set

Since we have to deal with an explosion of putatively interesting relevant patterns, we tried to estimate the

impact of applying various constraints during the extraction process. Traditional pattern mining deals with

constraints that we refer to as internal. Their characteristic property is that they are inferred from the

mined dataset. In our case, it is the binarized expression dataset. The main goal is usually to identify the

itemsets (the sets of genes) that tend to co-occur frequently. The larger the itemsets, i.e., the more genes

they contain, the better. Speaking of patterns, the most meaningful internal constraint regards their area,

i.e., product of size/number of genes and frequency. It can be also understood as the number of ones that

the pattern covers in the binarized expression dataset. Subjectively, the large patterns can be simply all

the patterns that are larger than a certain threshold. However, we will define them as all the patterns that

are large enough not to be spurious, i.e., occurring randomly. The goal is to find the optimal area threshold

to distinguish between spurious and meaningful patterns.

Figure 5 shows how many patterns and intervals satisfy the increasing area constraint. In order to reduce

the number of extracted patterns, the minimum pattern length was set to 4 and frequency to 5. Even using

such a constraint, the number of patterns above a given area were still too numerous to be manually

explored. For an example, there are 2090 intervals and 73378 patterns having their area larger than 50. Let

us note that the largest area patterns are very likely to be trivial, bringing no new knowledge, and it makes

little sense to focus purely on them. At the same time, the selected binarization parameters generate

rather sparse matrices. For other binarization types the explosion of patterns can be even faster.

There are two straightforward ways to treat the explosion of patterns. Firstly, one may try to focus on very

large patterns only and increase the value of the area constraint. It is easy to show that this approach is

rather counter-productive. The previous subsection on statistical pattern relevance clearly expresses that

the more frequent genes are more likely to form very large patterns. In practice, the increase of the area

threshold in order to get a reasonable number of patterns leads to a small but uniform set that is flooded by

the ribosomal genes which represent the most frequent genes in our dataset. Biologists rated these patterns

as valid but since they were found earlier ( [3]) they chose to discard them. Apparently, the area constraint

helps to distinguish between spurious and real (random and non-random) patterns, but it does not hold

that the larger the better. The pattern reduction by means of a stronger area restriction is unsound.

The second way relies upon a condensed representation of patterns. Comprehensibility increases as the

human expert deals with fewer and more compact condensed sets of similar patterns. As the patterns tend

to ”overlap” greatly, let us try to test how far they can be condensed. Let us define the maximal pattern as

such a pattern that no other pattern that satisfies constraints is its super-set. For example, having the set

of patterns

s = {b1 = {{A,B,C}, {1, 2, 3}}, b2 = {{A}, {2}}, b3 = {{A,B}, {1, 2, 3}}, b4 = {{A,C}, {1, 2, 4}}}, b1 and

10



b4 are the maximal patterns while b2 is a subset of b1 and b4, b3 is a subset of b1. Let us search for all the

non-trivial patterns having area≥24. The search results in 46671 different patterns which can be condensed

into 2274 maximal patterns. It is fewer than the original number, but still too high to be manually

inspected. Moreover, this maximal representation is incomplete and the original set of patterns cannot be

restored from it. The interval condensed representation generated by MUSIC is complete, the number of

intervals is usually higher than the number of maximal patterns (in this case we would have 9335 intervals).

Fundamentally different representation is a hierarchy of patterns [10]. The hierarchy is a result of

clustering, whose partitions can speed up orientation among patterns, however, their number has to be

decreased by external constraints again before the clustering is started. To sum up, the usual condensed

representations of patterns are still too extensive to be surveyed by humans.

The previous paragraphs explain the motivation for using background knowledge to formalize constraints.

It has been experimentally proven that the number of large patterns is so high that they cannot be

effectively surveyed by a human expert. Simultaneous application of internal and external constraints, such

as interestingness or expressiveness, may help to further reduce the patterns while keeping the interesting

ones. The selectivity of selected external constraints is shown in Figure 6. They capture the amount of

similarity in given patterns through the measurement of the similarity of all tags pairs within that given

pattern. sumsim(x)/svsim(x) expresses the average similarity, insim(x, thres, 1)/svsim(x) gives a

proportion of the strong interactions (similarity higher than the threshold) within the set of tags,

svsim(x)/(svsim(x) +mvsim(x)) can avoid patterns with prevailing tags of an unknown function. The

pruning starts with 46671 patterns that are larger than 3 genes and more frequent than 5 libraries. The

graphs depict that if both similarity (sumsim or insim) and existence (svsim) are thresholded, very

compact sets of patterns can be reached. The next section gives a demonstration that these sets also

gather biologically meaningful patterns.

Biological interpretation of patterns

The experimental setting started with all the large patterns that have a satisfactory average textual

similarity among mostly known tags (see the measures sim1(x) ≥ 0.025 and sim3(x) ≥ 0.7 in Figure 6. It

was immediately apparent that most of the extracted patterns were harboring genes encoding ribosomal

proteins, and proteins involved in the translation process. Such a trend has already been described,

although in a different dataset [3], and we therefore decided to focus on some other biological functions. We

further focused on patterns that did not harbor ribosomal proteins. This left us with a set of 19 patterns

that were manually inspected. On the basis of their automatic explanation, we found the following pattern:

B1={(KHDRBS1, NONO, TOP2B, FMR1) & (48, 52, 54, 56, 62, 65)}. There were 74 characteristic terms

adjoined to genes, 8 terms characterized the situations. It is of biological interest for these reasons:

• Three out of the four genes (KHDRBS1, NONO and FMR1) have been shown to encode proteins that

display an RNA-binding activity [36–38]. The term “RNA-bind” appears in the list of terms associated

with this pattern. Of those genes, two (KHDRBS1 and NONO) have been more specifically shown to be

involved in RNA splicing.
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• The fourth gene (TOP2B) encodes a topoisomerase [39]. It is interesting to note that the NONO gene

product was shown to have a role in DNA unwinding [37], an activity where it is known to interact

functionally with Topoisomerase 1 (a member of the family to which TOP2B belongs). Moreover an isoform

of TOP2B, TOP2A, has also been found differentially expressed in medulloblastoma versus normal SAGE

libraries [40]. The authors also note the existence of various anticancer drugs directed against TOP2A.

These drugs might have an effect on the TOP2B isoform, enhancing the anticancer effect. A topoisomerase

II inhibitor was also shown to display a significant antitumor activity in a medulloblastoma xenograft [41].

• A recent paper using a microarray has demonstrated the importance of RNA splicing processes for adult

neurogenesis [42]. The KHDRBS1 gene was found in this study among the genes important for adult

neural stem cells.

• All of the situations in which these genes are over-expressed (48, 52, etc.) are medulloblastomas. These

are very aggressive brain tumors in children. There is an increasing body of evidence that the most

aggressive cells within a medulloblastoma behave as brain stem cells [43, 44].

Altogether the biological hypothesis that can be made from this pattern is as follows: RNA binding in

general and RNA splicing in particular, somehow connected with genomic DNA conformation via TOP2B,

is as essential for medulloblastomas as it is for normal nervous system stem cells. Targeting this RNA

binding activity, might prove beneficial for medulloblastoma treatment, just as topoisomerase II inhibition

has proven to be.

We then tried to assess the efficiency of using the GO-based external knowledge (annotations plus

similarity), instead of the text-based one. We have constructed on principle a similar constraint to that

mentioned at the beginning of this section. It is very interesting to note that the very same pattern that

we previously analyzed (B1) was also found using this constraint. This clearly illustrated the level of

redundancy that we previously described (see Figure 7) and it demonstrates that some patterns are very

robust.

We then focused on the following pattern: B2={(EIF3S5, MRPL23, RPL18, EEF1G) & (6, 30, 31, 116,

150, 171)}. This pattern is very homogeneous in term of the function of the genes since all of the genes

participate to the translation machinery: EIF3S5 encodes the eukaryotic translation initiation factor 3,

MRPL23 encodes the mitochondrial ribosomal protein L23, RPL18 encodes the ribosomal protein L18 and

EEF1G encodes the eukaryotic translation elongation factor 1 gamma. It is interesting to note that at the

time we built our dataset, the gene MRPL23 had no GO record attached. Therefore, it belongs to this

pattern only by virtue of its expression pattern, although it encodes a mitochondrial ribosomal protein,

and therefore also participates to the same function that the rest of the genes in this pattern. It is

interesting to note that, although ribosomal genes were explicitly filtered out, one nevertheless obtained a

pattern displaying such homogeneous, translation-related, functions. The nature of the situations

harboring this set of simultaneously over-expressed genes is very heterogeneous, although some display

stem cell characteristics (fibroblast cells immortalized by telomerase over-expression, CD34+

haematopoietic stem cells), and some do not (lung normal cell line). It is therefore difficult to understand

why those situations have in common an over-expression of part of their translation machinery. One should
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nevertheless note that a preferential expression of translation-associated genes has just been described in

murine haematopoietic stem cells [45]. In any case, this illustrates the power of local patterns to highlight

gene expression patterns appearing though very different conditions, and that would not be captured by

global tools like hierarchical clustering.

The example given in Figure 7 gives another evidence that background constraints can effectively reduce

the number of patterns, they can express various kinds of interest and the patterns that tend to reappear

are likely to be recognized as interesting by an expert.

Gene function prediction

The proposed framework clearly serves knowledge discovery and the patterns correspond to descriptive

models. Contrary to predictive models such as support vector machines they do not directly classify

biological samples nor explicitly assign functions to genes. In this section we demonstrate an intelligible

application of patterns for gene function prediction. Its motivation is twofold. Firstly, the descriptive

models are hard to evaluate objectively. One can think of the manual evaluation of patterns done in the

previous subsection as data fishing. The predictive experiment provides means to objectively assess the

pattern sets en bloc. Secondly, the experiment implicitly outlines one of the ways the patterns can be

interpreted by the biologists. On the other hand, the experiment does not outline the way to routinely and

automatically predict gene functions. It is well known (see e.g. [46]) that similar gene expression profiles do

not immediately imply similar tissue functions.

Let us assume the hypothesis that there is a relationship between the functional similarity of genes and

their co-occurrence in patterns. Let us suppose that we have an expression dataset that mixes genes with

known and unknown functions (annotations). Under our hypothesis, patterns can be applied to predict an

unknown gene function in the following manner. Having a gene g with an unknown function, all the

plausible patterns containing g are mined. The function of g is likely to relate to the function of the

annotated genes that appear in the same patterns as g.

Let us experimentally verify our hypothesis. Obviously, gene co-occurrence in patterns does not imply gene

functional similarity logically/immediately, the implication under consideration is probabilistic. That is

why the predictive experiment tests all the genes that are frequent in the given expression dataset (and

likely to appear in a sufficient number of patterns) and their annotation is known (the annotation is not

used during pattern mining, only to evaluate the predictions). The hypothesis holds when the tested genes

show a significantly higher functional similarity within their patterns than with other genes. The

experiment pseudocode is as follows:

1. E : B ×G→ {0, 1} stands for a binary expression matrix, B is a set of m biological situations, G is a

set of n genes, S : G×G→ 〈0, 1〉 ∪ {NA} is a gene similarity matrix (derived e.g. from the gene

function ontology, NA stands for the undefined/missing similarity value).

2. Find a subset of frequent and annotated genes F ⊆ G such that

F={f ∈ G|freq(f) ≥ thres ∧ ∃i 6= f : Sfi 6= NA}, where freq(f) =
∑

b∈B ebf . Frequent genes are
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likelier to appear in patterns, annotations are needed to make assumptions on the similarity among

genes.

3. Select a minimum pattern frequency pfreq ≤ thres.

4. For each f ∈ F calculate the weighted mean similarity to the other genes in the expression matrix:

msimf =

∑Sfg 6=NA,g 6=f

g∈G,freq(g)>thres (freq(g)− pfreq)Sfg∑Sfg 6=NA,g 6=f

g∈G,freq(g)>thres (freq(g)− pfreq)

5. Choose a minimum pattern area parea ≥ pfreq. In E search for the set of all the large patterns

LPS ⊆ 2G such that LPS = {P ⊆ G|freq(P ) ≥ pfreq ∧ area(P ) ≥ parea}, where

freq(P ) = supp(P,E), area(P ) = freq(P )× length(P ).

6. For each f ∈ F find a subset LPSf of large patterns LPS that contains f :

LPSf = {P ∈ LPS|f ∈ P}. Enumerate gene occurrence in LPSf , every single occurrence of a gene

is counted. GFf is a set of gene occurrences in LPSf such that:

GFf = {(g, gfreq)|g ∈ P ∈ LPSf , g 6= f, gfreq = |{P ∈ LPSf |g ∈ P}|}

7. For each f ∈ F calculate the weighted mean similarity to the genes co-occurring in the large patterns:

psimf =

∑
g∈{(g,gfreq)∈GFf} gfreqSfg∑

g∈{(g,gfreq)∈GFf} gfreq

8. Do a paired test between msim and psim vectors. The null hypothesis is that genes (the frequent and

annotated) show no difference in their similarity to all the other genes and the genes that co-occur in

their patterns. The alternative hypothesis states that the genes that co-occur in patterns tend to be

more similar than randomly taken genes.

Table 2 summarizes the results for thres = 15, area = 15, pfreq = 5. It clearly shows that the intra-pattern

functional gene similarity is significantly higher than the similarity among randomly sampled genes. The

conclusion of this experiment is that the patterns actually generalize to the “unseen” cases, i.e., the

patterns enable to draw attention to the function of yet unknown genes.

Discussion

The goal of our work was to enhance the applicability of local pattern discovery for specific end users, such

as biologists. For this we first verified that the immense majority of local pattern generated from human

SAGE dataset were not attributable to random noise. This therefore clearly reinforces the need of

automatic tools for navigating among the huge amount of potentially biologically relevant local

associations among genes and situations.

We then verified that the external sources like Medline and Gene Ontology were at the same time

sufficiently correlated and not too redundant so that their use would provide an add on value for selecting
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among the whole lists of patterns. We then applied a general filtering strategy based upon a new

constraint-based mining algorithm, called MUSIC. Applying this algorithm on SAGE data could effectively

lead to a very significant reduction in the amount of patterns the end user has to deal with. Furthermore,

the “labeling” through lists of words rendered the selection of patterns for future exploration more easy.

Since the biological interpretation of a given pattern still has to be done manually, and is very time

consuming, it is critical that such patterns are presented to the end-user in a way where he/she can choose

rapidly which pattern is worth further investigation.

We applied this general strategy to a gene expression dataset displaying the expression of 11082 genes in

207 different situations. We explored the patterns generated and found that some patterns are sufficiently

robust to be generated through different types of constraints, either based upon GO-terms or upon

text-based evidence. Compared to a recently published related work [20], our approach adheres to local

patterns satisfying user-defined background properties specified by constraints. The fact that such

constraints may be derived from current literature rather than through the use of an ontology makes it a

more versatile tool, allowing recent evidence, available only in the literature, to be used as constraints.

One pattern obtained by the use of different constraints was further explored in detail. It led to an

interesting hypothesis regarding the role of RNA-binding activities in the generation and/or maintenance

of medulloblastomas. Another pattern pointed toward a role for the over-expression of part of the

translation machinery in heterogeneous situations. Altogether this work demonstrates the usefulness of

applying external constraints, and reinforces the potential impact of automated tools for analyzing large

matrices of gene expression.

The predictive experiment confirmed the hypothesis that there is a relationship between the functional

similarity of genes (and their products) and their co-occurrence in patterns. As a consequence, patterns

enable us to draw attention to the function (and presumably other properties) of yet unknown genes.

In summary, constraints provide a human understandable way to extract valuable knowledge from

potentially large and heterogeneous data. Provided they are computationally efficient, they enable

interactive knowledge discovery resulting in the user-optimal set of constraints and consequently the set of

desired patterns. We demonstrate the feasibility and usefulness of such an approach.
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Figures
Figure 1 - An overview of constraint-based mining through several heterogeneous datasets

A toy example of the mining context along with a possible constraint. The figure shows various data types

addressed by various sets of primitives. The constraint q addresses the large patterns (a) which are not

composed of more than one ribosomal gene (b) and contain mainly annotated genes (c) with a minimal

average similarity (d). The primitives are detailed in Table 1. The overall process can be viewed as a

simultaneous query on data and on patterns. The combination of the primitive constraints can be therefore

seen as an inductive query.

Figure 2 - Illustration of the interval pruning

The figure depicts an example of a pruning applied to the interval [AB,ABCD]. The pruning is

exemplified with values of the primitives sumsim and svsim. The key idea is to exploit properties of the

monotonicity of the primitives on the bounds of intervals. Whole intervals can be pruned at once.

Figure 3 - Efficiency of the interval pruning

The efficiency of interval pruning with decreasing frequency primitive threshold is shown. The left image

deals with the constraint

freq(X) ≥ thres ∧ lenght(X) ≥ 4 ∧ sumsim(X)/svsim(X) ≥ 0.9 ∧ svsim(X)/(svsim(X) + mvsim(X)) ≥ 0.9. The right image

deals with the constraint freq(X) ≥ thres ∧ length(regexp(X,′ ∗ribosom∗′, GO terms)) = 0.
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Figure 4 - Correlations among the datasets

The degree of correlation among the considered datasets. Similarity among gene profiles (or profiles of

biological situations) is calculated within the individual datasets first. Then, the correlation between

similarity matrices is determined. The higher the correlation between two datasets the more they agree in

gene similarity. This experiment was performed on the minimum transcriptome matrix (207x447).

Figure 5 - Selectivity of the area constraint

The number of patterns larger than the given area. This experiment was performed on the complete

207x11082 matrix.

Figure 6 - Pattern pruning by the external constraints

Simultaneous application of internal and external constraints helps to arbitrarily reduce the number of

patterns while attempting to conserve the potentially interesting ones. The figures show the decreasing

number of patterns with increasing threshold of selected external constraints. The effect of six different

constraints of various complexity is shown. This experiment was performed on the complete 207x11082

matrix.

Figure 7 - Demonstration of selectivity and possible overlap among various constraints

The gradual reduction of patterns by background constraint is shown. The individual constraints are

applied in conjunction. The figure demonstrates that background constraint can effectively reduce the

number of patterns, it can define various domains of interest and the patterns that emerge are likely to be

recognized as interesting by an expert. The example demonstrates three different ways to obtain a concise

output that can be easily surveyed by a human because it consists of 9, 2 or 5 patterns only. An interesting

observation is that the pattern that was identified by the expert as one of the ”nuggets” (shown at the

bottom of the image) can be obtained by several alternative ways. The first way uses NCBI textual

resources (gene summaries and adjoined PubMed abstracts), the second way relies only on functional GO,

while the third way utilizes similarities among biological situations too. Note that syntactically identical

constraints aiming at textual and GO resources result in output of different quantity (3881 vs. 1633

patterns). Considering the datasets of different origin but the same format and purpose, the expert can

decide whether to use them independently, unify or intersect them during pre-processing or via constraints.

These experiments were performed on the complete 207x11082 matrix.

Tables
Table 1 - Examples of primitives and their values in the data mining context of Figure 1

Table provides the meaning of primitives as well as their values in the context of Figure 1.
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primitives values

Boolean matrix

freq(X) frequency of X freq(ABC) = 2
length(X) length of X length(ABC) = 3

Textual data

regexp(X,RE) items of X whose associated phrases match the
regular expression RE

regexp(ABC,′ ∗ ion ∗′)
= AC

Similarity matrix

sumsim(X) similarity sum over the set of item pairs of X sumsim(ABC) = 0.13
svsim(X) number of stated item pairs belonging to X svsim(ABC) = 2
mvsim(X) number of missing item pairs belonging to X mvsim(ABC) = 1

insim(X,min,max) number of item pairs whose similarity lies be-
tween min and max

insim(ABC, 0.07, 1) =
1

Table 2 - Relation between gene co-occurrence in patterns and their similarity (in terms of molecular
function and biological process)

Table shows mean similarity among genes. It averages over all the genes that are frequent enough (the

expression matrix) and annotated (the similarity matrix). The value of msim estimates the similarity

regardless patterns (it postulates that patterns do not correlate with gene annotation at all). The value of

psim gives an estimate of the real gene similarity withinside patterns. The first row considers the similarity

in terms of the molecular function, the second row concerns the biological process. The similarity is derived

of the respective GO annotations. F is a number of the frequent and annotated genes, +/0/− give

numbers of genes out of F whose msim < psim/msim = psim/msim > psim.
Annotation type F +/0/- msim psim p-value (paired t-test)

molecular function 290 137/35/118 0.27 0.31 1.8E-7

biological process 274 135/33/106 0.32 0.36 2.4E-8
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Internal data External data

Boolean matrix D
Situations Genes

s1 A E F
s2 B C D
s3 A B C D E F
s4 A B C D

Similarity matrix
A B C D E F

A .07 ? ? .2 0
B .06 ? ? 0

C .07 .05 .04
D .03 .1

E ?

Textual data
A 'metal ion binding' 'transcription factor'

B 'serine-type peptidase activity' 'proteolysis'

C 'DNA binding' 'metal ion binding'

D 'ATP binding' 'nucleotide binding'

E 'proteolysis'

F 'ATP binding' 'metal ion binding'

freq, length,... sumsim, svmsim,... regexp

q(X) ≡ freq(X) × length(X) ≥ 24 (a)
∧ length(regexp(X,′ ∗ribosom∗′, TEXT_terms)) ≤ 1 (b)
∧ svsim(X, TEXT)/(svsim(X,TEXT) + mvsim(X,TEXT)) ≥ 0.7 (c)
∧ sumsim(X, TEXT)/svsim(X,TEXT) ≥ 0.025 (d)

Figure 1
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