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Abstract. One of the crucial needs in post-genomic research is to an-
alyze expression matrices (e.g., SAGE and microarray data) to identify
a priori interesting sets of genes, e.g., sets of genes that are frequently
co-regulated. Such matrices provide expression values for given biological
situations (the lines) and given genes (columns). The inductive database
framework enables to support knowledge discovery processes by means
of sequences of queries that concerns both data processing and pattern
querying (extraction, post-processing). We provide a simple formaliza-
tion of a relevant pattern domain (language of patterns, evaluation func-
tions and primitive constraints) that has been proved useful for specify-
ing various analysis tasks. Recent algorithmic results w.r.t. the efficient
evaluation (constraint-based mining) of the so-called inductive queries
are emphasized and illustrated on a 90 × 12 636 human SAGE expres-
sion matrix.

1 Introduction

We are now entering the post-genome era and it seems obvious that,
in a near future, the critical need will not be to generate data, but to
derive knowledge from huge data sets generated at very high through-
put. This has been a challenge for quite some time in genomic research,
and is now extending to the domain of transcriptome research, i.e., the
analysis of gene expression data. Different techniques (including microar-
ray [12] and SAGE [23]) allow to study the simultaneous expression of
(tens of) thousands of genes in various biological situations. The data
generated by those experiments can then be seen as expression matri-
ces in which the expression level of genes (the columns) are recorded
in various biological situations (the lines). What is presently required is
to try to find out groups of co-regulated genes, also known as synex-
pression groups [19], which, based on the guilt by association approach,
are assumed to participate in a common function, or module, within the
cell. Indeed, biologist often use clustering techniques to identify sets of



genes that have similar expression profiles (see, e.g., [13]). Recently, as-
sociation rule mining has been studied as a complementarity approach
for the identification of a priori interesting set of gene [2]. An added-
value is to provide a symbolic description that quantify the “associa-
tion” between sets of genes w.r.t. to boolean expression properties (e.g.,
over-expression, under-expression, strong variation). Mining large gene
expression matrices gives rise to new problems w.r.t. the standard ap-
plication of association rule mining (e.g., for basket analysis). However,
thanks to the properties of the so-called condensed representations and
Galois connections, [22] shows that it is possible to mine concepts [24]
in microarray data. Concept post-processing enables to perform various
tasks like conceptual clustering or frequent association rule mining (over
genes and/or biological situations).
The contribution of this paper is threefold. First, it describes gene expres-
sion data analysis within an inductive database approach [14, 6, 10]. For
that purpose, we provide a formalization of the pattern domain RNA and
discuss few evaluation functions and primitive constraints that have been
proved useful. Next, recent algorithmic results w.r.t. the efficient evalua-
tion of the so-called inductive queries are introduced. Finally, we discuss
an original research on human SAGE data that leads to a 90 × 27 679
expression matrix analysis, i.e., a quite large expression matrix w.r.t.
previous work. Even though this paper does not present new biological
results, the overall approach in biological terms has been already vali-
dated on a reduced set of genes [2]. We are pretty confident that given
the breakthrough into extraction feasibility, biological meaning will now
be extracted almost at will.
In Section 2, we define the RNA pattern domain and thus an inductive
database approach on gene expression data analysis. In Section 3, we
consider inductive query optimization issues. In Section 4 we describe
the experimental validation of our approach on two matrices built from
public human SAGE data. Section 5 concludes.

2 The RNA pattern domain

Mannila and Toivonen have formalized useful data mining tasks as fol-
lows [16]. Given, a language of patterns or models L to be considered, a
database r and a selection predicate q, the aim is then to find the theory
Th(L, q, r) = {φ ∈ L | q(φ, r) is true}. Furthermore, it is clear that, in
many situations, users are interested in extended theories, i.e., not only
elements from L but also the results of some evaluation functions for
these a priori interesting patterns or models (e.g., frequency, accuracy).
Computing theories can be embedded into the general framework of in-
ductive databases as it has been formalized in [6].
The schema of an inductive database is a pair (R, (QR, E)), where R
is a database schema, QR is a collection of patterns or models, E is a
collection of evaluation functions that define pattern or model proper-
ties in the data. An instance of the schema, an inductive database (r, s)
consists of a database r over the schema R and a subset s ⊆ QR. A typ-
ical KDD process operates on both of the components of an inductive



database. The user can select data from r and s remains the same. The
user can also select subsets s, and r is not modified. Let us just con-
sider simple typical queries, i.e., selections1. A data selection example is
σC(r0, s0) = (r1, s1) where r1 = σC(r0) and s1 = s0. For instance, we
will use this kind of query to remove some biological situations that do
not verify criterion C. Any data manipulation can be performed there.
A pattern selection example is τC′(r0, s0) = (r2, s2) where r2 = r0 and
s2 contains only the patterns or models that satisfy criterion C′. For
instance, this kind of query can be used to select sets of genes that have
some desired properties, e.g., co-regulation in at least p biological situa-
tions. Queries on inductive databases satisfy a closure property: queries
that return data, queries that return patterns or models (data mining
and post-processing queries) and queries that cross over the data and the
patterns or models (post-processing queries) are all queries on inductive
databases and return an inductive database. For instance, we can com-
pute τC′(σC(r0, s0)) = (r3, s3). Any query that has to compute patterns
or models is called an inductive query. Notice that when the user needs
the evaluation functions (e.g., frequencies), their values are computed
from the current data part of the inductive database instance.
This approach is studied in depth in the cInQ consortium2 and has lead
to interesting results for local pattern discovery (item sets, association
rules, linear graphs, sequences, strings, see [4, 10] for survey papers and
an introduction to the terminology). In this paper, we consider a pattern
domain related to item sets since biologists consider that useful knowl-
edge about the transcriptome can be expressed as sets of genes and/or
sets of biological situations that have some properties. As a methodolog-
ical guideline, specifying a pattern domain leads to the definition of pat-
tern languages, evaluation functions and primitive constraints. A query
language must enable to define standard queries on the data component
but also inductive queries. As a first approximation, we can consider
that inductive queries (i.e., selection predicates) are built from boolean
combinations of primitive constraints.

Let us now consider the languages we have for the RNA pattern domain.
Let S denote a set of biological situations and A denote a set of genes. An
expression matrix (ED) associates each couple of S × A a real number,
i.e., an expression value. It is out of the scope of this paper to discuss its
semantics (exact number of sequenced tags3 - or absolute frequency- in
the case of SAGE data [23], variation between two studied experimental
conditions in the case of microarray data [12]).
Raw expression data can be stored in, e.g., relational databases, and be
queried by any standard query language (selection of situations, projec-
tion on sets of genes). Also, aggregates can be used to derive summariza-
tion of raw data, e.g., the expression mean value or the standard variation
for each gene. It makes sense to abstract a raw expression matrix into a

1 Selection of data and patterns are respectively denoted by σ and τ . As it is clear
from the context, the operation can also be applied on inductive database instances.

2 European Contract IST-2000-26469, consortium on discovering knowledge using
Inductive Queries.

3 For SAGE, tags correspond to genes and the biological situations are called libraries.



boolean matrix r that records expression properties. In the example from
Figure 1, S = {s1, . . . s5} and A = {a1, a2, . . . a10}. Each attribute aj de-
notes a property about the expression of gene j. The expression data is
thus represented by the matrix r of the binary relation R ⊂ S×A defined
for each situation and each attribute. (si, aj) ∈ r denotes that situation
i has the property j, e.g., that gene j is over-expressed (under-expressed,
has a strong variation) in situation i. In the following, we assume that
expression properties encode over-expressions.

The boolean data to be mined is thus a 3-tuple r = (S,A, R).

The RNA pattern language is the collection of couples from LA×LS where
LA = 2A (sets of genes) and LS = 2S (sets of situations). For instance,
a typically interesting pattern for a biologist can be (X, T ) where X is a
set of genes that include at least one transcription factor and which are
consistently up-regulated in all the normal lung tissues, i.e., set T .

Attributes

Situations a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

s1 1 1 1 1 0 1 1 0 0 0
s2 1 1 1 1 0 0 0 0 1 1
s3 1 1 1 1 0 0 0 0 1 1
s4 0 0 0 0 1 1 1 1 1 1
s5 1 0 1 0 1 1 1 1 0 0

Fig. 1. Example of a boolean matrix r1

To obtain boolean matrices from a raw expression matrix ED, we use
one discretization operator. Typically, such an operator assigns the true
value when the expression value is above some threshold value. Let us
denote by β1 and β2 two operators, β1(ED) = r1 and β2(ED) = r2 are
two boolean matrices that are generally different. Important properties
like containment can be proved or studied (see Section 4 for examples).

Among the simple boolean data transformations, transposition can be
used. If r = (S,A, R) is a boolean expression matrix, the transposed
matrix is tr = (A,S, tR) where (a, s) ∈ tR ⇐⇒ (s, a) ∈ R.

Let us now consider evaluation functions for the RNA pattern domain. We
do not claim that this is an exhaustive list of useful primitives on situa-
tions × genes expression matrices. We mainly consider Galois operators
(see, e.g., [24]) that have been proved extremely useful.

Definition 1 (Galois connection [24]). If T ⊆ S and X ⊆ A, as-
sume f(T, r) = {a ∈ A | ∀s ∈ T, (s, a) ∈ R} and g(X, r) = {s ∈ S | ∀a ∈
X, (s, a) ∈ R}. f provides the set of over-expressed genes that are com-
mon to a set of situations and g provides the set of situations that share a
given set of attributes (expression properties). (f, g) is the so-called Ga-
lois connection between S and A. We use the classical notations h = f ◦g
and h′ = g ◦ f to denote the Galois closure operators.



Definition 2 (Frequency). The frequency of a set of genes X ⊆ A
denoted F(X, r) is the size of g(X, r). The frequency of a set of situations
T ⊆ S is the size of f(T, r).

Given Figure 1 (parameter r1 is omitted), let us consider the pattern
(X, T ) where X = {a1, a3} and Y = {s1, s2, s3, s5}. We have F(X) = 4
and T = g(X).

Let us now introduce some primitive constraints for the RNA pattern
domain. Our primitive constraints are defined on sets of genes and sets
of situations.

Definition 3 (Constraints on frequencies). Given a set of genes
X ⊆ A and an absolute frequency threshold γ, Cminfreq(X, r) ≡ F(X, r) ≥
γ. Sets that satisfy Cminfreq are said γ-frequent in r. The maximal fre-
quency is defined as Cmaxfreq(X, r) ≡ F(X, r) ≤ γ. These constraints can
be defined on sets of situations as well.

Definition 4 (Closed set and CClose constraint). A set of genes
X ⊆ A is closed (it satisfies the CClose constraint in r) iff h(X, r) = X.
A set of situations T ⊆ S is closed iff h′(T, r) = T .

Given Figure 1, assume the RNA pattern ({a1, a2}, {s1, s2, s3}). if γ = 3,
{a1, a2} satisfies Cminfreq in r1. Furthermore, {s1, s2, s3} = g({a1, a2}).
{s1, s2, s3} is a closed set of situations (i.e., h′({s1, s2, s3}) = {s1, s2, s3})
but {a1, a2} is not a closed set on genes: h({a1, a2}) = f(g({a1, a2})) =
{a1, a2, a3, a4}.
The closure of a set of genes X, h(X, r), is the maximal (w.r.t. set in-
clusion) superset of X which has the same frequency than X in r. A
closed set of genes is thus a maximal set of genes whose expression prop-
erties (true values) are shared by a set of situations. For instance, the
closed set {a1, a3} in r1 (see Figure 1) is the largest set of genes that are
over-expressed simultaneously in situations s1, s2, s3 and s5. The Galois
connection gives rise to concepts [24] that associate closed sets of genes
with closed sets of situations.

Definition 5 (Concept). If X ∈ LA and T ∈ LS , we say that (X, T )
is a concept in r when T = g(X, r) and X = f(T, r). By construction,
concepts are built on closed sets and each closed set of genes (resp. situ-
ations) is linked to a closed set of situations (resp. genes) [24].

Seven RNA patterns are concepts in r1 (see Figure 1). Examples of con-
cepts are ({a1, a3}, {s1, s2, s3, s5}) and ({a1, a2, a3, a4, a9, a10}, {s2, s3}).
({a1, a2}, {s1, s2, s3}) is not a concept.
Concept are interesting for the biologist: they can suggest the so-called
transcription modules.

An important kind of primitive constraint concerns the syntactical re-
strictions that can be checked without any access to the data. [17] con-
tains a systematic study of syntactical constraints for sets.

Definition 6 (Syntactic constraints). A syntactic constraint enforces
that a set Y ∈ LC , where LC ⊆ LA or LC ⊆ LS . Various means can be
used to specify LC , e.g., regular expressions.



Some other interesting constraints can use additional information about
the genes or the situations. For instance, given a set of genes X, it is
possible to use biological knowledge about gene functions and enforce
constraints on gene functions for the genes in X.

Many data mining processes on gene expression matrices can be formal-
ized as the computation of RNA patterns whose set components satisfy
combinations of primitive constraints.

Mining the frequent sets of genes is specified as the computation of {X ∈
LA | Cminfreq(X, r) satisfied}. We can then provide each RNA pattern of
the form (X, g(X, r)) where X is frequent. This collection can suggest
synexpression groups. Adding syntactical constraints (e.g., enforcing the
presence or the absence of some genes) is also often used by biologists.
Frequent sets of situations can be desired as well.

Mining the closed sets of genes is specified as the computation of {X ∈
LA | CClose(X, r) satisfied}. These sets provide a valuable information
to biologists thanks to closeness property, e.g., closed sets of genes are
maximal sets of genes that are co-regulated in a set of situations. In that
context, each RNA pattern of the form (X, g(X, r)) is a concept. Dually,
it is possible to compute closed sets on situations T and associate the
closed set of genes f(T, r). A typically useful task is to look for every
concept (X, T ) such that X is frequent. Syntactical restrictions can be
used as well.
Many other examples could be given, e.g., feature construction by looking
for sets of genes that satisfy Cminfreq in one data set and Cmaxfreq in
another one [11]. As a typical interesting finding for a biologist, one
might look for each RNA pattern (X, T ) such that X is a set of genes that
are frequently up-regulated in all the medulloblastomas (T = g(X)) and
that are infrequently found up-regulated in corresponding normal regions
of the brain.
Post-processing queries can be understood as queries on materialized
collections of sets: the user selects the sets that fulfill some new criteria.
Notice however that, from the specification point of view, they are not
different from data mining queries even though the evaluation does not
need an extraction phase.

3 Inductive query evaluation

In this section, our goal is to emphasize that the current algorithmic
know-how can tackle the evaluation of the kind of inductive query we
need thanks to a clever use of the Galois connection. We chose to em-
phasize constraint-based extraction of sets of genes for which it is then
possible to associate sets of situations (using the g operator).
Mining frequent sets has been extensively studied the last 10 years.
One major recent progress comes from the various algorithms that com-
pute efficiently the sets that satisfy a conjunction of anti-monotonic and
monotonic constraints, e.g., [17, 11, 15, 7]. Indeed, most of the primi-
tive constraints we have considered are monotonic or anti-monotonic.
Some of them, the succinct ones [17], are in fact syntactical constraints



that can be put transformed into a conjunction of monotonic and anti-
monotonic constraints. We assume the reader knows well the background
in constraint-based mining and the efficient use of monotonicity.
Expression matrices have generally a few tens of lines (biological sit-
uations) and thousands or even tens of thousands of columns (genes).
Thus, the computation of sets of genes that satisfy a given constraint C
is extremely hard. Indeed, as soon as we have more than a few tens of
columns, only a quite small subset of the search space can be explored.
Then, the size of the solution, i.e., the collection of the sets that sat-
isfy C can be so huge that no algorithm can compute them all. When a
constraint like Cminfreq is used, it is possible to take a greater frequency
threshold to decrease a priori the size of the solution. The used thresh-
old can however be disappointing for the biologist: extracted patterns
are so frequent that they are already known (e.g., they are the so-called
house-keeping genes). Furthermore, in the expression matrices we have
to analyze, the number of the frequent sets can be huge, whatever is
the frequency threshold. It comes from the rather low number of lines
and thus the small number of possible frequencies. Clearly, Apriori-like
algorithms that have to compute the frequency of at least every frequent
set can not be used here. Any Apriori-based strategy for pushing the
other constraints might fail too.
When the minimal frequency constraint is used, one of the key idea for
inductive query optimization in RNA can come from the condensed rep-
resentation of the frequent sets. They contain a much smaller number
of sets with their frequencies even though it is straightforward and ef-
ficient to regenerate all the frequent sets and their frequencies. Various
condensed representations have been studied, see, e.g., [8, 9]. Indeed, it
is easy to derive the whole collection of the frequent sets of genes from
{X ∈ LA | Cminfreq(X, r) ∧ CClose(X, r) satisfied}. This compact repre-
sentation can be computed efficiently, see, e.g., [20, 5, 21, 25, 1].
The algorithm we use is based on free set extraction [5]. Freeness char-
acterizes the closed set generators (i.e., the closures of the free sets are
the closed sets).

Definition 7 (Freeness and Cfree constraint). A set of genes X ⊆ A
is free iff the frequency of X in r is strictly lower than the frequency of
every strict subset of X. We say that X satisfies constraint Cfree in r.
Interestingly, freeness is an anti-monotonic property while closeness is
not an anti-monotonic one.

Given Figure 1, {a1, a6} satisfies Cfree in r1 but {a1, a2, a3} does not.

In other terms, we compute the collection of the closed sets of genes as
{h(X, r) ∈ LA | Cfree(X, r) satisfied}. Minimal frequency constraint can
be added as well.
Even though these approaches have given excellent results on large ma-
trices for transactional data (e.g., highly correlated and rather dense data
in WWW usage mining applications), they often fail on expression ma-
trices because of the their “pathological” dimensions. Furthermore, we
want to enable the use of various discretization operators and thus the
analysis of more or less dense matrices. It appeared crucial to us that we
can achieve a breakthrough w.r.t. extraction feasibility.



We have studied the extraction from the transposed matrices using the
Galois connection to infer the results that would have been extracted
from the initial matrices. [22] provides a general framework for trans-
posed extractions given a constraint Cminfreq with the frequency threshold
greater than 1. In a context where the number of columns is quite large
w.r.t. the number of lines, i.e., the case for gene expression matrices, it
is possible to compute every concept (absolute frequency threshold set
to 1) based on the following observation:
– The direct extraction computes the closed sets of genes and for each

closed set X (h(X, r) = X), computing g(X, r) = T enables to
provide the concept (X, T ). This computation can be intractable
due to the number of genes.

– The transposed extraction computes the closed sets of situations and
for each closed set T (h(T, tr) = h′(T, r) = T ), computing g(T, tr) =
f(T, r) = X enables to provide the concept (X, T ).

– Computing g(X, r) during the direct extraction or g(T, tr) during the
transposed extraction can be performed at almost no cost during the
computations of the associated free sets and their closures.

Thus, it is possible to obtain the same collection of concepts when ex-
tracting them from a matrix or its transposed. The choice between one
or the other method can be guided by the dimension of the matrix: for
expression matrices, our experience is that transposition is often needed.
It is important to know that when concepts are obtained, it is straightfor-
ward to provide frequent sets (for genes and situations) and more gener-
ally, many constraint-based extractions of RNA patterns can be performed
by filtering techniques and, eventually, partial regeneration phases.

4 Applications to SAGE data

We are working with the publicly available SAGE data produced from
human cells4 and it leads to difficult data mining contexts.
Analyzing human SAGE data is relevant since this data source has been
largely under-exploited today. The only available on line approach con-
sists in comparing the existing libraries 2 by 2 to extract differential
information. To the best of our knowledge, [18] is the unique study on
the complete human SAGE data mining. One obvious reason for such a
poor exploitation lies in the structure of the data, including a high error
rate for low frequency tags (and especially tags appearing only once in
a library). The use of discretization operators provides a solution to the
problem of low frequency tags. It is our conviction that some essential
biological information might be derived from the mass of the SAGE data.
We designed a relational database for storing the data available on the
NCBI site. From such a database, we have built two gene expression
matrices, the so-called 74× 822 and 90× 12636 matrices.
The construction of the 74×822 matrix is described in [2]. It records the
expression level, as of June 2001, for 822 genes belonging to the minimal
transcriptome set [23]. After having extracted biologically relevant infor-
mation from the 74× 822 matrix for which the direct extraction worked

4 www.ncbi.nlm.nih.gov/SAGE/index.cgi



quite well, we decided to build the most exhaustive SAGE expression ma-
trix,i.e., to the best of our knowledge, an original contribution to human
SAGE data analysis. From the human libraries available in December
2002. We selected those with more than 20 000 tag sequences and we
eliminated the tag sequences for which the identification was ambiguous,
based on the SAGE map file 5. Numerous tags are present only once in a
library. Nowadays, it is difficult to evaluate whether these tags represent
some real genes or correspond to sequencing errors. We therefore only
kept the tags appearing at least twice in at least one library. It as pro-
vided a matrix of 90 libraries and 27 679 tags. Using simple statistics (see
[3]), we have been able to remove 15 043 tags. In the end, we produced
a matrix recording the expression level of 90 libraries and 12 636 tags.

We have chosen to extract the information concerning the over expression
of genes: the true value (1) for one given library and one given gene
indicates the over expression of this gene in this library. On the contrary,
a false value (0) indicates that this gene is not over expressed in this
library. We have studied four discretization techniques:

– “ENE” for “Expressed or not”. We assign the value 1 when the tag
is present (whatever is its value) in the library, 0 otherwise.

– “Mid-Ranged”. The highest and lowest expression values in the li-
brary are identified for each tag and the mid-range value is defined as
being equidistant from these two numbers (arithmetic mean). Then,
for a given tag, all expression values that are strictly above the mid-
range value give rise to value 1, 0 otherwise.

– “Max - X% Max”. The cut off is fixed w.r.t. the maximal expression
value observed for each tag. From this value, we deduce a percentage
X of this value, 25% in our experiments to decide for over expression.

– “X% Max”. For each tag, we consider libraries in which its level of
expression is in X% of the highest values (5% in our experiments).
These tags are assigned to value 1, 0 for the others.

These different discretization procedures give rise to boolean matrices
with varying densities (number of true values on the number of values,
see Columns 2 in Table 1). It estimates the difficulty of the extractions.
From a qualitative point of view, there is no good discretization method.
The impact of the discretization on the validity/interestingness of the ex-
tracted regularities must be studied in each particular context. A typical
mining task is then to look at τC(βi(ED)) ∩ τC(βj(ED)), i.e., looking
at the similar sets of genes that have been found by two different dis-
cretization operators. Indeed, many useful tasks will also involve other
set operations between the pattern collections.

We have used the mv-miner prototype developed by F. Rioult with an
absolute frequency threshold of 1. In that context, it provides each free
set on the columns, its frequency, its closure (i.e., a closed set on the
columns) and its associated closed sets w.r.t. the lines (Pentium 800MHz
with RAM 4GB and 3GB for swap, linux operating system). We have
compared the extraction performances not only between the large and
the smaller matrices but also across the different discretizations. The

5 ftp://ftp.ncbi.nih.gov/pub/sage/map/Hs/NlaIII/



Discretization Density Nb free sets Nb closed sets

M1 ENE 82.8 intractable intractable
tM1 ENE 82.8 intractable intractable

M1 Mid-Ranged 12.2 13 580 544 80 068
tM1 Mid-Ranged 12.2 209 829 80 068

M1 Max - 25% Max 3.8 35 934 1 386
tM1 Max - 25% Max 3.8 3 211 1 386

M1 5% Max 4.8 72 630 1 808
tM1 5% Max 4.8 3 362 1 808

Discretization Density Nb free sets Nb closed sets

M2 ENE 34.5 intractable intractable
tM2 ENE 34.5 intractable intractable

M2 Mid-Ranged 4.8 intractable intractable
tM2 Mid-Ranged 4.8 324 565 196 130

M2 Max - 25% Max 2.2 intractable intractable
tM2 Max - 25% Max 2.2 21 603 9 150

M2 5% Max 4.7 intractable intractable
tM2 5% Max 4.7 54 762 31 766

Table 1. Results for M1 = 74× 822 and M2 = 90× 12 636

results on the boolean matrices derived from 74×822 (resp. 90×12 636)
are in Table 1.
In these contexts, one database scan does not cost too much and ex-
traction time is clearly related to the number of generated candidates.
Only the numbers of free sets (with frequency 6= 0) and closed sets in
both a boolean matrix and its transposed matrix are given here. Results
are very interesting. Intractability in very high density matrices is un-
derstandable. In every case for the larger matrices, extraction becomes
feasible by working on the transposed matrix. For instance, using the
Mid-Ranged discretization on the large 90 × 12 636 matrix, the process
has failed after more than 17 hours of computations while it has taken
less than 1 minute on its transposed version. Others preliminary exper-
iments on microarray data [22] have confirmed the added-value of the
approach.

5 Conclusion

We are studying an inductive database approach to gene expression data
analysis. Among others, it enforces us to think in terms of primitive
constraints and efficient constraint-based mining techniques. Efficiency
is needed not only for tractability but also for supporting the dynamic
aspects of knowledge discovery (interactivity with the biologists).
We have identified a small set of primitives that are quite useful for real
gene expression data analysis. Expressing analysis process by means of
a sequence of queries is also important for optimizing the computations



when, e.g., new expression data is available (a new evaluation of a po-
tentially complex process from a new initial expression matrix).
Surprisingly, the pathological dimensions of the expression matrices that
were for us a bottleneck a few months ago, enable now to extract every
concept in real data. It comes from the combination of an efficient algo-
rithm for computing the closed sets from the free sets and the use of the
Galois connection properties.
We are currently carrying the experimentation on the large SAGE matrix
to extract biologically meaningful groups of co-regulated genes and their
associated sets of biological situations. This should result in more biolog-
ically interesting findings than in [2] since the large matrix records the
expression level of far more genes, and therefore of far more particular
genes of special interest to a given biologist.

Acknowledgements. This work has been partially funded by the EU
contract cInQ IST-2000-26469 (FET arm of the IST programme) and
a French inter-EPST Bioinformatic program (2002-2003) through which
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le Cancer.

References

1. Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal.
Mining frequent patterns with counting inference. SIGKDD Explo-
rations, 2(2):66 – 75, Dec. 2000.

2. C. Becquet, S. Blachon, B. Jeudy, J.-F. Boulicaut, and O. Gan-
drillon. Strong association rule mining for large gene expression
data analysis: a case study on human SAGE data. Genome Biology,
12, 2002.

3. S. Blachon, C. Robardet, J-F. Boulicaut, and O. Gandrillon. Extrac-
tion de régularités dans des données d’expression SAGE humaines.
In Proceedings Informatique et analyse du transcriptome JPGD’03,
Lyon, F, May 2003. In French.

4. J.-F. Boulicaut. Inductive databases and multiple uses of frequent
itemsets: the cInQ approach. In Database Support for Data Mining
Application, Rosa Meo et al. Eds. Springer-Verlag LNCS 2682, In
Press. To appear.

5. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of
frequency queries by mean of free-sets. In Proceedings PKDD’00,
volume 1910 of LNAI, pages 75–85, Lyon, F, Sept. 2000. Springer-
Verlag.

6. J.-F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling KDD
processes within the inductive database framework. In Proceedings
DaWaK’99, volume 1676 of LNCS, pages 293–302, Florence, I, Sept.
1999. Springer-Verlag.

7. C. Bucila, J. Gehrke, D. Kifer, and W. White. DualMiner: A dual
pruning algorithm for itemsets with constraints. Data Mining and
Knowledge Discovery 7(3):241–272, 2003.



8. A. Bykowski. Condensed representations of frequent sets: application
to descriptive pattern discovery. PhD thesis, INSA Lyon, F-69621
Villeurbanne cedex, France, Oct. 2002.

9. T. Calders and B. Goethals. Mining all non derivable frequent item-
sets. In Proceedings PKDD’02, volume 2431 of LNAI, pages 74–83,
Helsinki, FIN, Aug. 2002. Springer-Verlag.

10. L. De Raedt. A perspective on inductive databases. SIGKDD Ex-
plorations, 4(2):69–77, January 2003.

11. L. De Raedt and S. Kramer. The levelwise version space algorithm
and its application to molecular fragment finding. In Proceedings
IJCAI’01, pages 853 – 862, Seattle, USA, Aug. 2001. Morgan Kauf-
mann.

12. J. L. DeRisi, V. R. Iyer, and P. O. Brown. Exploring the metabolic
and genetic control of gene expression on a genomic scale. Science,
278, 1997.

13. M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster anal-
ysis and display of genome-wide expression patterns. Proceedings
National Academy of Science USA, 95:14863–14868, 1998.

14. T. Imielinski and H. Mannila. A database perspective on knowledge
discovery. CACM, 39(11):58–64, Nov. 1996.

15. B. Jeudy and J.-F. Boulicaut. Optimization of association rule min-
ing queries. Intelligent Data Analysis, 6(4):341 – 357, 2002.

16. H. Mannila and H. Toivonen. Levelwise search and borders of theo-
ries in knowledge discovery. Data Mining and Knowledge Discovery
journal, 1(3):241–258, 1997.

17. R. Ng, L. V. Lakshmanan, J. Han, and A. Pang. Exploratory min-
ing and pruning optimizations of constrained associations rules. In
Proceedings of ACM SIGMOD’98, pages 13–24, Seattle, USA, May
1998. ACM Press.

18. R. Ng, J. Sander, and M. Sleumer. Hierarchical cluster analysis of
sage data for cancer profiling. In Proceedings BIOKDD’01 co-located
with ACM SIGKDD’01, San Francisco, USA, Aug. 2001.

19. C. Niehrs and N. Pollet. Synexpression groups in eukaryotes. Nature,
402:483–487, 1999.

20. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of
association rules using closed itemset lattices. Information Systems,
24(1):25–46, Jan. 1999.

21. J. Pei, J. Han, and R. Mao. CLOSET an efficient algorithm for
mining frequent closed itemsets. In Proceedings SIGMOD Workshop
DMKD’00, Dallas, USA, May 2000.

22. F. Rioult, J.-F. Boulicaut, B. Crémilleux, and J. Besson. Using trans-
position for pattern discovery from microarray data. In Proceedings
SIGMOD Workshop DMKD’03, pages 73–79, San Diego, USA, June
2003.

23. V. Velculescu, L. Zhang, B. Vogelstein, and K. Kinzler. Serial anal-
ysis of gene expression. Science, 270:484–487, 1995.

24. R. Wille. Restructuring lattice theory: an approach based on hier-
archies of concepts. In Ordered sets, pages 445–470. Reidel, 1982.

25. M. J. Zaki. Generating non-redundant association rules. In Pro-
ceedings SIGKDD’00, pages 34 – 43, Boston, USA, Aug. 2000. ACM
Press.


