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Abstract. Emerging patterns (EPs) are associations of features whose
frequencies increase significantly from one class to another. They have
been proven useful to build powerful classifiers and to help establishing
diagnosis. Because of the huge search space, mining and representing
EPs is a hard and complex task for large datasets. Thanks to the use
of recent results on condensed representations of frequent closed pat-
terns, we propose here an exact condensed representation of EPs (i.e.,
all EPs and their growth rates). From this condensed representation, we
give a method to provide interesting EPs, in fact those with the highest
growth rates. We call strong emerging patterns (SEPs) these EPs. We
also highlight a property characterizing the jumping emerging patterns.
Experiments quantify the interests of SEPs (smaller number, ability to
extract longer and less frequent patterns) and show their usefulness (in
collaboration with the Philips company, SEPs successfully enabled to
identify the failures of a production chain of silicon plates). These con-
cepts of condensed representation and “strong patterns” with respect to
a measure are generalized to other interestingness measures based on
frequencies.

Keywords: Emerging patterns, condensed representations, closed pat-
terns, characterization of classes, frequency-based measures.

1 Introduction

The characterization of classes and classification are significant fields of research
in data mining and machine learning. Initially introduced in [13], emerging pat-
terns (EPs) are patterns whose frequency strongly varies between two datasets
(i.e., two classes). EPs characterize the classes in a quantitative and qualitative
way. Thanks to their capacity to emphasize the distinctions between classes,
EPs enable to build classifiers or to propose a help for diagnosis. They are at
the origin of varied works and they are also used in the realization of powerful
classifiers [14, 16]. From an applicative point of view, we can quote various works
on the characterization of biochemical properties or medical data [18].

B. Goethals and A. Siebes (Eds.): KDID 2004, LNCS 3377, pp. 173–189, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



174 A. Soulet, B. Crémilleux, and F. Rioult

Nevertheless, mining EPs in large datasets remains a challenge because of the
very high number of candidate patterns. The pruning property used by the level-
wise algorithms [20] and often used in data mining cannot be directly applied.
Usual methods use handlings of borders [13] in order to find version spaces.

In this paper, we are interested in the extraction of emerging patterns and
the definition and characterization of useful kinds of emerging patterns. One
originality of our approach is to take advantage of recent progress on the con-
densed representations of patterns and more precisely on closed patterns [22, 5].
By synthesizing sets of patterns and making easier a process in which users can
query data and patterns, condensed representations are an important concept
in inductive databases. A brief overview of the condensed representation based
on closed pattern is given in Section 2.3.

This paper mainly proposes four contributions. Firstly, we define an exact
condensed representation of the emerging patterns for a dataset. Contrary to
the borders approach (Section 2.2) which provides the emerging patterns with
a lower bound of their growth rate, this condensed representation easily enables
to know the exact growth rate for each emerging pattern. Moreover, there are
efficient algorithms to extract this condensed representation. Secondly, we high-
light a new property characterizing a particular kind of emerging patterns, the
jumping emerging patterns which make up an active research topic. Thirdly, we
propose a new kind of emerging patterns, we call them “ strong emerging pat-
terns ” (SEPs): these EPs have the best growth rates and we think that they are
of a great interest. Furthermore, we show that SEPs are easily obtained from
the exact condensed representation of the emerging patterns. This work is also
justified by requests from providers of data. Experiments quantify the interests
of SEPs (smaller number, ability to extract longer and less frequent patterns).
We also give the results achieved by the use of the strong emerging patterns
for characterizing patients with respect to atherosclerosis and for successfully
identifying the failures of a production chain of silicon plates in collaboration
with the Philips company. Lastly, we show that these concepts of condensed rep-
resentation and “strong patterns” with respect to a measure can be generalized
to other interestingness measures based on frequencies.

This paper is an extension of a preliminary work presented in [29]: new contri-
butions are a property characterizing the jumping emerging patterns, the ability
to easily obtain the exact growth rate for each emerging pattern, the proofs of the
properties, in-depth experiments (qualitative results coming from our collabora-
tion with the Philips company, atherosclerosis dataset, influences of the minimal
frequency threshold) and the generalization to other interestingness measures
based on frequencies.

The paper is organized in the following way. Section 2 introduces the context,
the required notations and the works related to this field. Section 3 proposes
a new characterization of the jumping emerging patterns. It defines an exact
condensed representation of the emerging patterns and also the strong emerging
patterns, which are easily achieved from this condensed representation. Section 4
presents the experimental evaluations which quantify the interests of SEPs and
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their successful use within a collaboration with the Philips company. Finally,
Section 5 extends results highlighted in the case of EPs to other measures based
on frequencies.

2 Context and Related Works

2.1 Notations and Definitions

Let D be a dataset (Table 1), which is an excerpt of the data used for the
search for failures in a production chain (cf. Section 4). This table (which is a
simplification of the real problem) is used as an elementary example to present
the concepts throughout this paper.

Each line (or transaction) of Table 1 represents a batch (noted B1, . . . , B8)
described by features (or items) : A, . . . , E denote the advance of the batch within
the production chain and C1, C2 the class values. D is partitioned here into two
datasets D1 (the right batches) and D2 (the defective batches). The transactions
having item C1 (resp. C2) belong to D1 (resp. D2). A pattern is a set of items
(e.g., {A,B,C}) noted by the string ABC. A transaction t contains the pattern
X if and only if X ⊆ t. Lastly, |D| (as usual |.| denotes the cardinality of a set)
is the number of transactions of D.

The concept of emerging patterns is related to the notion of frequency. The
frequency of a pattern X in a dataset D (noted F(X,D)) is the number of
transactions of D which contain X (for example, F(ABC,D) = 4). X is frequent
if its frequency is at least the frequency threshold fixed by the user. From the
absolute frequency, we can compute the relative frequency which is F(X,D)/|D|.
Unless otherwise indicated, we use in this paper the absolute frequency. Let us
note that by the definition of the partial sets Di associated to the class identifiers
Ci, we have the relation F(X,Di) = F(XCi,D).

Intuitively, an emerging pattern is a pattern whose frequency increases sig-
nificantly from one class to another. The capture of contrast between classes
brought by a pattern is measured by its growth rate. The growth rate of a pat-

Table 1. Example of a transactional dataset

D
Batch Items

B1 C1 A B C D
B2 C1 A B C D
B3 C1 A B C
B4 C1 A D E
B5 C2 A B C
B6 C2 B C D E
B7 C2 B C E
B8 C2 B E
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tern X from D2 to D1, noted GR1(X), is defined as :

⎧⎨
⎩

0, if F(X,D1) = 0 and F(X,D2) = 0
∞, if F(X,D1) �= 0 and F(X,D2) = 0
|D2|×F(X,D1)
|D1|×F(X,D2)

, otherwise

Thus, the definition of an emerging pattern (EP in summary) is given by :

Definition 1 (Emerging Pattern). Given a threshold ρ > 1, a pattern X is
said to be an emerging pattern from D2 to D1 if GR1(X) ≥ ρ.

Let us give some examples from Table 1. With ρ = 3, A, ABC, and ABCD
are EPs from D2 to D1. Indeed, GR1(A) = 4/1 = 4, GR1(ABC) = 3/1 = 3 and
GR1(ABCD) = 2/0 = ∞. Conversely, BCD is not an EP: GR1(BCD) = 2/1 =
2 (< ρ). When the pattern X is not present in D2 (i.e. F(X,D2) = 0), we get
GR1(X) = ∞ and such a pattern is called jumping emerging pattern (JEP). For
instance, ABCD is a JEP for D1 and BCDE is a JEP for D2. Unless otherwise
indicated, we consider that the growth rate of a pattern X must be higher than 1
in order that X is an EP.

2.2 Related Works

Efficient computation of all EPs in high dimensional datasets remains a chal-
lenge because the number of candidate patterns is exponential according to the
number of items. The naive enumeration of all patterns with their frequencies
fails quickly. In addition, the definition of EPs does not provide anti-monotonous
(e.g., BCD is an EP for D1, not BC) constraints to apply a powerful pruning
of the search space for methods stemming from the framework of level-wise al-
gorithms [20]. Thus, various authors proposed other ways.

The approach of handling borders, introduced by Dong and al. [13], mines
multiple couples of maximal and minimal borders from the datasets. The interval
described by these two borders corresponds to EPs. Each couple provides an
interval giving a concise description of emerging patterns. Unfortunately, the
computation of the intervals must be repeated very often and for all the Di

and this process does not provide for each EP its growth rate. This technique
is particularly effective for the search of JEPs due to the convexity of their
search space [17]. Nevertheless, Bailey and al. [2] propose a new tree-based data
structure for storing the dataset. Their approach is 2-10 times faster than the
technique of handling borders.

Other approaches exist. Zhang et al. [32] introduce an anti-monotonous con-
straint to be able to apply a level-wise algorithm. But this one eliminates many
EPs and loses the completeness of the search. In a more general way, this problem
can be seen as the search for the patterns checking the conjunction of an anti-
monotonous constraint and a monotonous constraint [12, 11], this work drawing
its origins from version spaces [21].
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2.3 Condensed Representation Based on Closed Patterns

As indicated in the introduction, this paper revisits the search and the char-
acterization of EPs by taking advantage of recent progress on the condensed
representations of patterns. We briefly point out below the main concepts re-
quired to understand the rest of this paper.

A condensed representation of patterns provides a synthesis of large data sets
highlighting the correlations embedded in the data. There is a twofold advan-
tage to use condensed representations. First, such an approach enables powerful
pruning criteria during the extraction which greatly improve the efficiency of
algorithms [5, 22]. Second, the synthesis of the data provided by a condensed
representation is at the core of relevant and multiple uses of patterns (e.g., re-
dundant or informative rules [31], rules with minimal body [9], clustering [15],
classification,. . . ), which are key points in many practical applications. There are
several kinds of condensed representations of patterns [22, 5]. The most current
ones are based on closed patterns, free (or key) patterns or δ-free. A general
framework is presented in [7].

For the rest of the paper, we focus on the condensed representation based on
closed patterns. A closed pattern in D is a maximal set of items (with respect to
the set inclusion) shared by a set of transactions. This concept is related to the
lattice theory [3] and the Galois connection. In Table 1, ABC is a closed pattern
because B1, B2, B3 and B5 do not share another item. The notion of closure is
linked to the one of closed pattern.

Definition 2 (Closure). The closure of a pattern X in D is h(X,D) =
⋂{tran−

saction t in D|X ⊆ t}.
An important property on the frequency stems from this definition. An item

A belongs to the closure of X in D if and only if F(XA,D) = F(X,D). The
closure of X is a closed pattern and F(X,D) = F(h(X,D),D). In our example,
h(AB,D) = ABC and F(AB,D) = F(ABC,D). Thus, the set of the closed
patterns is a condensed representation of all patterns because the frequency of
any pattern can be inferred from its closure.

3 Condensed Representation and Strong Emerging
Patterns

This section highlights a new property to characterize jumping emerging patterns
and defines an exact condensed representation of the emerging patterns. Lastly,
it proposes the strong emerging patterns.

3.1 Characterization of JEPs

Let us start by generalizing the definition of EPs to data having more than two
classes. In Section 2.1, we have D2 = D\D1. So, F(X,D2) = F(X,D)−F(X,D1)
(and, similarly, |D2| = |D|− |D1|). So, the generalization of the growth rate (see
its definition in Section 2.1) and thus the definition of EPs, are straightforward.
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Let D be a dataset partitioned into k parts denoted D1, . . . ,Dk (D =
⋃

i Di).
The items C1, . . . , Ck respectively indicate the membership of a transaction to
a dataset D1, . . . ,Dk. ∀i ∈ {1, . . . , k}, the growth rate of D\Di in Di is:

GRi(X) =
|D| − |Di|

|Di|︸ ︷︷ ︸
noted αi

× F(X,Di)
F(X,D) −F(X,Di)

(1)

We are now able to provide a new characterization of JEPs for data having
any number of classes. An item A belongs to the closure of X in D if and only
if F(XA,D) − F(X,D) = 0 (Definition 2). Then, Property 1 shows how to
characterize JEPs:

Property 1 (Characterization of JEPs Based on Closed Patterns).

X is a JEP of Di ⇐⇒ Ci ∈ h(X,D)

Proof. Ci ∈ h(X,D) ⇐⇒ F(XCi,D) = F(X,D). By definition of Di,
F(X,Di) = F(XCi,D). Then F(X,D) = F(X,Di) and the denominator of
GRi(X) is null (cf. Equation 1) and X is a JEP.

This property is helpful: it enables to easily obtain JEPs from the closures.
Indeed, for each closed pattern XCi, it is enough to check if X is contained in the
condensed representation. If X does not belong to the condensed representation,
it means that its closure is XCi (because XCi is a closed pattern) and X is a
jumping emerging pattern of Di.

3.2 Exact Condensed Representation of Emerging Patterns

Let us move now how to get the growth rate of any pattern X. Equation 1
shows that it is enough to compute F(X,D) and F(X,Di). These frequencies
can be obtained from the condensed representation of frequent closed patterns.
Indeed, F(X,D) = F(h(X,D),D) (closure property) and by definition of the
partial bases Di, F(X,Di) = F(XCi,D) = F(h(XCi,D),D). Unfortunately,
these relations require the computation of two closures (h(X,D) and h(XCi,D)),
which it is not efficient. The following properties solve this disadvantage:

Property 2. Let X be a pattern and Di a dataset, F(X,Di) = F(h(X,D),Di).

Proof. The properties of the closure operator ensure that for any transaction t,
X ⊆ t ⇐⇒ h(X,D) ⊆ t. In particular, the transactions of Di containing X are
identical to those containing h(X,D) and we have the equality of the frequencies.

It is now simple to show that the growth rate of every pattern X is obtained
thanks to the only knowledge of the growth rate of h(X,D):

Property 3. Let X be a pattern, we have GRi(X) = GRi(h(X,D)).
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Proof. Let X be a pattern. By replacing F(X,D) with F(h(X,D),D) and
F(X,Di) with F(h(X,D),Di) in Equation 1, we immediately recognize the
growth rate of h(X,D).

For instance, h(AB,D) = ABC and GR1(AB) = GR1(ABC) = 3. The
closed patterns with their growth rates are enough to synthesize the whole set of
EPs with their growth rates. So, we obtain an exact condensed representation of
the EPs (i.e. the growth rate of each emerging pattern is exactly known). Let us
recall that the borders technique (cf. Section 2.2) only gives a lower bound of the
growth rate. This property is significant because the number of closed patterns
is lower (and, in general, much lower) than that of all patterns [6]. In practice,
h(X,D) is directly obtained by the minimal (with respect to the set inclusion)
closed pattern containing X of the condensed representation.

3.3 Strong Emerging Patterns

The number of emerging patterns of a dataset can be crippling for their use.
In practice, it is judicious to keep only the most frequent EPs having the best
growth rates. But thoughtlessly raising these two thresholds may be problematic.
On the one hand, if the minimal growth rate threshold is too high, the EPs found
tend to be too specific (i.e. too long). On the other hand, if the minimal frequency
threshold is too high, EPs have a too low growth rate.

We define here the strong emerging patterns which are the patterns having
the best possible growth rates. They are a trade-off between the frequency and
the growth rate.

Definition 3 (Strong Emerging Pattern). A strong emerging pattern X
(SEP in summary) for Di is an emerging pattern such that XCi is a closed
pattern in Di.

A great interest of SEPs concerns their growth rate: the following property
indicates that the SEPs have the best possible growth rates.

Property 4 (SEPs: EPs with Maximum Growth Rate). Let X be a pat-
tern not containing the item Ci. Then the SEP coming from h(X,Di) has a
better growth rate than X, i.e. one has GRi(X) ≤ GRi(h(X,Di)\{Ci}).

Proof. Let Y = h(X,Di)\{Ci}. Thanks to the closure property, F(X,Di) =
F(Y,Di). We can then write (Equation 1) GRi(Y ) = αi × F(X,Di)

F(Y,D)−F(X,Di)
. The

extensivity of the closure operator makes it possible to write X ⊆ h(X,Di) and
Ci �∈ X thus X ⊆ Y and F(X,D) ≥ F(Y,D) due to the property of frequency,
which shows that GRi(X) ≤ GRi(Y ).

Let us illustrate Property 4 on the elementary example. The pattern BC
is not a SEP for class 1 (because h(BC,D1)\{C1} = ABC), its growth rate
is 1, one has GR1(BC) ≤ GR1(ABC) = 3 and we notice that F(BC,D1) =
F(ABC,D1). Let us note that Property 4 enables to highlight an alternative
definition of SEPs: an emerging pattern X is said to be a SEP in Di when
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GRi(X) > GRi(Y ) for all supersets Y of X such that F(X,Di) = F(Y,Di).
This new definition is based on two key points. First, the condition on frequency
(i.e. F(X,Di) = F(Y,Di)) indicates that we choose a particular pattern for each
equivalence class of frequency. Second, this pattern must maximize the growth
rate in this equivalence class and Property 4 shows that this pattern corresponds
to the closed one.

As for EPs, the property of “being a SEP” is neither monotonous (e.g., B is a
SEP for D2, not BC), nor convertible [23] because no ordering relation over items
allows to get a pruning criterion for prefixes. Nevertheless, SEPs are efficiently
mined thanks to the properties of the condensed representations (see Section 2.3)
and the simple post-processing step to get them. The second advantage of the
strong emerging patterns is that their growth rates are immediately known (cf.
Property 5). We start by giving Lemma 1 which facilitates the understanding of
this property.

Lemma 1. If XCi is closed in Di, then XCi is closed in D.

Proof. No transaction of D\Di contains item Ci. If XCi is closed in Di, the only
transactions of D containing XCi are in Di and h(XCi,D) = XCi, therefore XCi

is closed in D.

Property 5 indicates that the growth rate of SEPs is immediately obtained.

Property 5 (SEPs: Computing Their Growth Rate). If X is a strong emerg-
ing pattern for Di, then GRi(X) can be obtained directly with the frequencies of
the condensed representation based on the frequent closed patterns of D.

Proof. Let X be a SEP, therefore XCi is closed in Di (Definition 3). To calculate
GRi(X), it is necessary to calculate F(X,Di) and F(X,D). By definition of Di,
F(X,Di) = F(XCi,D) and Lemma 1 ensures that XCi is closed in D, thus, its
frequency is provided by the condensed representation of the closed patterns of
D. To calculate F(X,D), two cases arise: if X is closed in D, its frequency is
directly available. If not, XCi being closed in D, Property 1 indicates that X is
a JEP: its growth rate is infinite.

SEPs are computed thanks to the condensed representation of closed patterns
in D by filtering the closed patterns containing a class value Ci. For each of them,
we simply deduce GRi(X) by considering the pattern X as indicated in the proof
above.

Compared to EPs, Properties 4 and 5 show two meaningful advantages of
SEPs: on the one hand, they have the best possible growth rates, on the other
hand, they are easy to discover from the condensed representation of frequent
closed patterns of D (Lemma 1 ensures that we only have to filter frequent closed
patterns containing Ci). Let us note that the EPs based on X and h(X,Di) have
the same frequency, thus they have the same quality according to this criterion.
However, the SEP coming from h(X,Di) has a stronger (i.e. higher) growth rate
and thus offers a better compromise between frequency and growth rate.
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4 Experiments

Experiments provide both quantitative and qualitative results. Quantitative re-
sults address the number of SEPs with regard to other kinds of EPs, according
to the frequency threshold, etc. and qualitative results deal with the successful
use of SEPs to identify the failures of a production chain of silicon plates within
a collaboration with the Philips company. Even if some overall results are ex-
pected (for instance, the number of SEPs can be only smaller than the number
of EPs), we think that it is interesting to quantify them (following our example
on the number of SEPs versus those of EPs, is it a drastic reduction or not?).

We use the MVminer prototype [26] to produce the condensed representa-
tion of frequent closed patterns which enables to provide SEPs (see the previous
section). In order to compare quantitative results achieved by SEPs with regard
to EPs, it is necessary to obtain EPs. For that, we used an Apriori-like proto-
type, which computes frequent patterns and selects those having a growth rate
greater than a threshold (let us recall that the use of borders does not allow to
get the exact growth rate of each pattern [13], so we cannot compare straightfor-
wardly this approach with results stemming from the exact condensed represen-
tation of EPs). We did not perform run-time experiments about the efficiency
of the extraction of the condensed representation of closed patterns because this
efficiency has been shown by several authors [5, 22, 24].

4.1 Data Overview

Experiments were carried out on two real datasets. This first dataset Dathero

comes from the STULONG project1. These data address a twenty-year longitu-
dinal study of the risk factors of atherosclerosis in a population of 1417 men in
former Czechoslovakia. We are interested in characterizing patients according to
whether they die or not due to atherosclerosis. From this available data base,
we prepare a dataset constituted of 748 rows (divided into 2 classes) described
by 119 items (details are in [10]).

The second dataset DPhilips comes from a collaboration with the Philips
company. The industrial aim is to identify mistaken tools in a silicon plate pro-
duction chain. Data are composed of batches, a batch gathers several silicon
plates. Briefly speaking, a batch is described by the equipment used at each
stage of the flow-chart which is followed during the production. The quality test
leads to three quasi-homogeneous classes corresponding to three quality levels.
Finally, the characterization is performed on a dataset made up of 44 items (i.e.
stage/equipment) and comprising 84 lines (i.e. 84 batches).

4.2 Quantitative Results About SEPs Versus Other Kinds of EPs

Numbers of EPs, Closed EPs and SEPs. We compare here the numbers of
EPs, closed EPs (which stemmed from closed patterns) and SEPs. The number
of closed EPs is a measure of the size of the condensed representation. Figure 1

1 Euromise data, http://lisp.vse.cz/challenge/ecmlpkdd2003/
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Fig. 1. Comparison between the different kinds of emerging patterns

depicts the distributions of EPs according to the length of patterns for a minimal
frequency threshold of 4.0% in Dathero and 1.2% in DPhilips. Two threshold
values of the minimal growth rate (1 and ∞) are used. This figure shows that
the number of EPs is very high compared to the number of closed EPs or SEPs. In
DPhilips, this disproportion does not decrease in spite of the rise of the minimal
growth rate. These too large numbers of EPs cannot be presented to an expert
for his analysis task.

Influences of the Minimal Frequency Threshold. Let us see now the role
of the minimal frequency threshold. Figure 2 compares the number of EPs with a
minimal growth rate of 1 according to the minimal frequency thresholds. We see
that the numbers of closed EPs and SEPs increase less quickly than the number
of EPs when the frequency decreases. It means that the search for SEPs can be
carried out with a smaller minimum frequency. In other words, as the number of
SEPs and the size of the exact condensed representation are small compared to
the number of EPs, it is possible to examine longer and less frequent patterns.

Figure 3 indicates the variations of the number of EPs, closed EPs and SEPs
according to the length of patterns on Dathero (the minimal frequency threshold
is 2.3%). We note that the number of SEPs and the size of the exact condensed
representation of the EPs increase less quickly when the minimal frequency de-
creases. For searching long emerging patterns, the combinatory explosion is con-
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trolled in the case of the exact condensed representation of the EPs and the
SEPs, but the extraction of EPs fails for patterns longer than 6 items. Again, it
allows to mine less frequent and longer patterns.

4.3 Results on Applications

Let us say a few words on the applicative results brought by these experiments.
On Dathero, we have proposed SEPs to distinguish the patients who die or not due
to atherosclerosis. Experiments highlighted SEPs with a quite high growth rate
and frequency, and physicians are interested in continuing this work. Further-
more, experts have a strong interest in the quantification of the results (growth
rate, frequency).

In our collaboration with Philips (dataset DPhilips), experts were the most
interested by the confrontation of SEPs having the strongest growth rates and a
length equals 1 or 2. Table 2 indicates the most useful SEPs. There is no reliable
characteristic SEP of length 1. For instance, the pattern E=727 has a growth
rate close to 1 and it is present both in Low and High. On the contrary, SEPs
of length 2 appeared relevant. The contrast between the pattern E=727 A=284
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Table 2. Examples of strong emerging patterns

SEPs with a length of 1

Class Pattern GR Frequency

Low E=727 1.01 100% (45)

Medium F=232 1.03 100% (37)

High E=727 1.01 100% (45)

SEPs with a length of 2 and GR > 1.5

Class Pattern GR Frequency

Low E=727 A=284 3.64 75.6 % (34)

Medium I=504 F=232 1.84 91.9 % (34)

Medium L=490 F=232 1.62 54.0 % (20)

High E=727 B=288 2.92 71.1 % (32)

High E=727 A=222 2.33 91.1 % (41)

(for Low) and the pattern E=727 A=222 (for High) enabled to suspect a problem
on the stage A (since E=727 is not a discriminant item). Moreover, the stage A
comprises only two kinds of equipment (the 222 and the 284). This result tends
to show the need for modifying the adjustments of equipment 284 in order that
they are similar to those of the equipment 222. After talks with the experts, they
have confirmed that the stage suspected by the SEPs was the real cause of the
failures (an equipment was badly tuned). This experiment shows the practical
contribution of SEPs on real-world data. In other contexts [10], longer SEPs
were proved useful to establish diagnostic and the brute force did not allow to
obtain these patterns.

Let us recall that SEPs have the advantage of giving a precise growth rate
contrary to EPs which would be found by handlings of borders. This quantifica-
tion is useful at the same time for the selection of EPs and the judgment of the
experts. Lastly, thanks to their fewer number, they provide a more understanding
characterization of the data than ordinary EPs.

5 Generalization to Frequency-Based Measures

In this section, we generalize the concepts of exact condensed representations and
“strong patterns” with respect to other usual interestingness measures based on
frequencies. As for the growth rate, which can be seen as a particular measure,
the closure operator provides good properties to extend these concepts.

5.1 Exact Condensed Representation of a Frequency-Based
Measure

We consider various interestingness measures based on frequencies proposed in
statistics, machine learning and data mining. Metrics such as support, confi-
dence, lift, correlation and collective strength are useful to evaluate the quality
of classification rules X → Ci [27, 8, 28, 1, 19].
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Let us define a frequency-based measure Mi which enables to estimate the
quality of the premise of the rule X → Ci to characterize the class i. For instance,
such a measure can be the growth rate. More formally:

Definition 4 (Frequency-Based Measure). Let D be a dataset partitioned
into k parts denoted D1, . . . ,Dk, a frequency-based measure Mi to characterize Di

is a function of frequencies F(X,D1), . . . ,F(X,Dk) i.e. Mi(X) = F (F(X,D1),
. . . ,F(X,Dk)).

A frequency-based measure is limited to a combination of frequencies of Di.
In particular, such a measure cannot contain other parameters (e.g., the length of
a pattern). Some frequency-based measures are indicated in Table 3. Notice that
all these measures are expressed in term of frequencies while the literature about
interestingness measures often writes these measures by using probabilities (e.g.,
P (A|Ci) corresponding to F(X,Di)/|Di|). Some measures (e.g., lift, J-Measure)
use frequencies non restricted to datasets D1, . . . ,Dk but these frequencies can
be computed from F(X,D1), . . . ,F(X,Dk). For example, the frequency F(X,D)
corresponds to

∑k
j=1 F(X,Dj). Thus, these measures respect Definition 4.

As for the emerging patterns, we can know the value of a frequency-based
measure on any pattern X from its closure in D:

Theorem 1. Let X be a pattern, we have Mi(X) = Mi(h(X,D)).

Proof. Let X be a pattern. For each i, Property 2 allows to replace F(X,Di) by
F(h(X,D),Di). Mi(X) = F (F(X,D1), . . . ,F(X,Dk)) = F (F(h(X,D),D1), . . . ,
F(h(X,D),Dk)) = Mi(h(X,D)).

For instance, the closure of AB in D is ABC and we have lift1(AB) =
lift1(ABC) = 3/2. In the same way, h(CDE,D) = BCDE and L2(CDE) =
L2(BCDE) = 0.529 with k = 2.

The closed patterns with their measure Mi are enough to synthesize the whole
set of patterns according to Mi. In practice, the number of closed patterns is
lower (and often, much lower) than that of all patterns [4]. Thus, the closed
patterns with their measure Mi are an exact condensed representation of the
measure Mi.

5.2 Strong Frequency-Based Measure

In large datasets, the number of a priori interestingness patterns satisfying a
given threshold for a measure Mi can be too huge for their use. As for the SEPs,
the notion of strength can be extended to select the patterns which maximalize
a measure Mi.

Definition 5 (Strong Frequency-Based Measure). A frequency-based mea-
sure Mi which decreases with F(X,D), when F(X,Di) remains unchanged, is a
strong frequency-based measure.

For instance, the lift is |D|×F(X,Di)
|Di|×F(X,D) . When F(X,Di) remains unchanged and

F(X,D) increases, the lift decreases because the denominator increases. Thus,
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Table 3. Examples of frequency-based measures to characterize Di

Frequency-based measure Formula Strong P3

J-Measure (J) [28] F(X,Di)
|D| × log( F(X,Di)×D

|Di|×F(X,D)
)

+F(X,D\Di)
|D| × log( F(X,D\Di)×D

F(X,D)×|D\Di| ) no no

Support [1] F(X,Di)/|D| yes no

Confidence [1] F(X,Di)/F(X,D) yes no

Sensitivity F(X,Di)/|Di| yes no

Success rate
F(X,Di)

|D| + |D\Di|−F(X,D\Di)
|D| yes yes

Specificity
|D\Di|−F(X,D\Di)

|D| yes yes

Piatetsky-Shapiro’s (PS) [25]
F(X,Di)

|D| − F(X,D)
|D| × |Di|

|D| yes yes

Lift [19]
|D|×F(X,Di)
|Di|×F(X,D)

yes yes

Odds ratio (α)
F(X,Di)×(|D\Di|−F(X,D\Di))

(F(X,D)−F(X,Di))×(|Di|−F(X,Di))
yes yes

Laplace (L) [8]
F(X,Di)/|D|+1
F(X,D)/|D|+k

with k > 1 yes yes

Growth rate (GR) [27]
|D|−|Di|

|Di| × F(X,Di)
F(X,D)−F(X,Di)

yes yes

the lift is a strong frequency-based measure. In the same way, for the growth rate
(Equation 1), when F(X,D) increases and F(X,Di) is unchanged, the numerator
is constant and the denominator increases. So, the growth rate decreases and it
is also a strong frequency-based measure.

We link now Definition 5 and the framework defining a good measure given by
Piatetsky-Shapiro [25]. The latter has proposed three key properties which have
to be satisfied to get a good measure. On a formal point of view, Definition 5 is
almost similar to the third property P3 given by Piatetsky-Shapiro: Mi mono-
tonically decreases with P (X) when the rest of the parameters (i.e. P (X,Ci) and
P (Ci)) remain unchanged. Indeed, we can observe that P (X) = F(X,D)/|D|,
P (X,Ci) = F(X,Di)/|D| and P (Ci) = |Di|/|D|. In comparison with Definition
5, the only slight difference is that Mi must strictly decrease when F(X,D) in-
creases whereas, in our definition, Mi may remain unchanged. In practice, most
of usual measures are strong frequency-based measure because most of them
check the property P3. A survey [30] is carried out on the property P3 about
twenty one interestingness measures. Table 3 gives, for several measures, these
ones satisfying or not Definition 5 and property P3.
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Theorem 2. Let Mi be a strong frequency-based measure and X be a pattern,
we have Mi(X) ≤ Mi(h(X,Di)\{Ci}). h(X,Di)\{Ci} is called a strong pattern
in class i.

Proof. Let Mi be a strong measure of frequencies and X be a pattern. If we
note Y = h(X,Di)\{Ci}, X and Y have the same frequency in dataset Di

(property of the closure operator) i.e. F(X,Di) = F(Y,Di). As X ⊆ Y , we
obtain that F(X,D) ≥ F(Y,D). Thus, Definition 5 allows to conclude that
Mi(X) ≤ Mi(Y ).

Let us illustrate Theorem 2 on the running example. The pattern CD is not
a strong pattern for class 1 (because h(CD,D1)\{C1} = ABCD), its Piatetsky-
Shapiro’s measure is 0.0625 and one has PS1(CD) ≤ PS1(ABCD) = 0.125 as
well.

The pattern X and its corresponding strong pattern h(X,Di)\{Ci} have the
same frequency in dataset Di and the strong pattern coming from X has an
higher value of the measure. Thus, the strong patterns are a good choice to
reduce the number of patterns and preserve the best patterns with respect to
the measure.

Let us note that as for the SEPs, only F(X,Di) and F(X,D) are necessary
to compute any measure Mi. The same filtering proposed in Section 3.3 can
be applied to efficiently mine strong patterns with respect to Mi thanks to the
condensed representation of frequent closed patterns.

6 Conclusion

Based on recent results in condensed representations, we have revisited the field
of emerging patterns. We have defined an exact condensed representation of the
emerging patterns and a new characterization of the jumping emerging patterns.
We have proposed a new kind of emerging patterns, the strong emerging patterns
which are the EPs with the highest growth rates. We have provided an efficient
method to extract SEPs from the exact condensed representation of EPs.

In addition to the simplicity of their extraction, this approach produces only
few SEPs which are particularly useful for helping to diagnosis. So, it is easier
to use SEPs than search relevant EPs among a large number of EPs. Dealing
with our collaboration with the Philips company, SEPs enabled to successfully
identify the failures of a production chain of silicon plates. These promising
results encourage the use of SEPs in many practical domains.

Finally, we have extended the main ideas to frequency-based measures. We
have proven that any frequency-based measure can be exactly and concisely
represented in the condensed representation of the closed patterns. This result
stems from the properties of the closure operator. As for the SEPs, the concept
of strength allows to select less patterns, called strong patterns, which maximal-
ize most of the interestingness measures. Further work is the use of the exact
condensed representation and strong patterns for classification tasks.
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