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Abstract. This work presents a data mining effort to discover pure or
almost-pure clusters with respect to the stage of fibrosis from a med-
ical database collected at the Chiba University Hospital, Japan. Such
clusters, described by examinations on patients, may lead to relevant
factors for estimating the stage of fibrosis. We use a method, suitable
for categorical data, which is able to produce a set of clusters composed
of patients with a minimum overlapping or a slight overlapping to catch
all the similarities between patients. Results point out the role of some
examinations.

Keywords: hepatitis, factors of stage of liver fibrosis, cluster, approximate
clustering, frequent closed itemsets.

1 Introduction

Nowadays we have important medical data stored during the patients’ diseases
like, for instance, hepatitis data collected at Chiba University Hospital (Japan).
The use of relevant and efficient methods to explore such large data sets is not
easy. Statistics are often used to validate suspected models and we are facing to-
day to a new challenge: how may new models be discovered? By extracting from
large amounts of data non trivial “nuggets” of information, Knowledge Discovery
in Databases (KDD) is a semi-automatic way which may help the user for this
work. We are interested in discovering the structure and relationships within
data. For instance, in medicine, it is interesting to find clusters (i.e. groups) of
patients having similar characteristics (or close to each other) while patients in
different groups are dissimilar, or to find groups of similar medical features. From
KDD techniques point of view, in this paper, we focus on a method to discover
meaningful clusters from large data sets, especially with categorical features.
We will briefly see in Section 2 that this approach is quite different from usual
clustering techniques.



Hepatitis B and C are virus infections that affect the liver of the patient.
These infections are important because they have a potential risk of develop-
ing liver cirrhosis or hepatocarcinoma. Indicators of such diseases is fibrosis of
hepatocyte. For instance, liver cirrhosis is characterized as the terminal stage
of liver fibrosis. The detailed mechanism of disease progression is unknown yet.
The contribution of this paper to the ECML/PKDD 2002 discovery challenge is
to better estimate the stage of liver fibrosis from laboratory examinations, this
stage is at present determined by biopsy. The idea is to substitute laboratory
examinations for biopsy because biopsy is invasive to patients. We would like
also to show the potential impact of the discovery of clusters (see Section 2) in
domains like hepatitis.

In this paper, we propose the use of an efficient method called Ecclat [4]
(for Extraction of Clusters from Concepts LATtice) to produce a set of clusters
composed of patients with a minimum overlapping (“approximate clustering”) or
a slight overlapping to catch all the similarities between patients. The behavior
of the method is parametrized by the user. We will see in Section 2 that such
clusters are a subset of concepts from the frequent closed itemsets lattice and are
selected according to an evaluation measure. Patients data (and, more generally,
examples at hand) are complex and include categorical attributes. In these ex-
periments, clusters gather patients and are described by examinations (and their
results) performed on patients (blood test and urinalysis). Biopsy features are
not used to build clusters. Selected clusters are then ranked on the biopsy report
about progress of fibrosis in order to discover pure (or almost-pure) clusters with
respect to the stage of fibrosis. Combinations of examinations characterizing such
clusters may be good factors for estimating the stage of fibrosis. Let us note that
we have already applied a quite similar approach for searching prognostic fac-
tors in patients with supradiaphragmatic early stage Hodgkin’s disease. Results
brought out some parameters for which classical statistic methods confirmed
that they were interesting [5].

Section 2 briefly presents our method to produce clusters of patients, which
is required to understand the work done in this discovery challenge. Section 3
gives our work for the data preparation stage. Results (including out-hospital
and in-hospital examinations) and discussion are presented in Section 4.

2 Discovery of meaningful clusters

2.1 Context and related work

Let us recall that the general meaning of clustering is decomposing or partition-
ing examples into groups so that the examples in one group are similar to each
other and are as different as possible from the examples in other groups. The
main methods [10] are those based on an attempt to find the optimal partition
into a specified number of clusters (e. g., the standard K-means method) and
those based on a hierarchical attempt to discover cluster structure (e.g., the
centroid-based agglomerative hierarchical clustering).

Usual criterion functions yield satisfactory results for numeric attributes but
are not appropriate when examples include categorical attributes. It is not easy



to define fair distances between categorical attributes [3][12]. In medicine, it is
common to have also categorical data and some methods have been developed
to handle such data [7, 9]. Recent works in Knowledge Discovery in Databases
(KDD) revisit this question. More precisely, two main families of clustering meth-
ods based on association rules exist [1]. A family of methods [15] consists in
grouping examples into clusters in order to minimize an intra-cluster and an
inter-cluster costs, but it is not easy to derive a characterization of each cluster.
[8] presents a method of association rules hypergraph k-partitioning. A clustering
of attributes (i.e. features) is obtained, but transactions are not straightforwardly
ranked into clusters.

To cope with these problems, the next section briefly shows the contribution
of conceptual classification methods [13] and KDD’s results (with frequent closed
itemsets) to return a first selection of clusters. Then, in Section 2.3 we briefly
presents a method [4] based on a cluster evaluation measure to build the set of
the most interesting clusters gathering similar examples.

2.2 Frequent closed itemsets

In the following, we use the most common terms in KDD: transaction (instead
of example) and item a pair attribute / value (e. g., stage of fibrosis = F3).
For a transaction (e.g. a patient), an item has a binary value: present (i.e. the
patient has the characteristic depicted by the item) or not. An itemset is a set
of items. A transaction t supports an itemset X if and only if X ⊆ t. r is a
multi-set of transactions (e.g., Table 1 is constituted of 8 transactions, each one
identified by its Id, and there are 9 items denoted A . . . I). |r| (where as usual
| . . . | denotes the cardinality of a set) is the number of transactions.

Id Items
1 A B C

2 A B C

3 A B C

4 D E

5 D E H

6 A D E F G H

7 A F G I

8 H I

Table 1. A transactional database

Even if they do not produce directly a clustering, conceptual classification
methods [13] bring out relevant clusters of examples described by categorical
attributes. Indeed, these methods create a hierarchy of concepts, generally rep-
resented by a lattice [6]. Every concept can be seen as a cluster which is a couple
(T, I) composed of a set of transactions and an itemset. A key point is that T is
the largest set of transactions described by the items found in I, and symmetri-
cally, I is the largest set of common items of the transactions supporting I. Let
us illustrate this idea with the example provided in Table 1. For instance, the



couple composed of transactions 1, 2 and 3 on one side and the items ABC1 on
the other side is a concept of the lattice whereas there is no couple composed
of transactions 1, 2 (since transaction 3 shares the same items as transactions 1
and 2).

The idea of maximally extending the sets is on the core to highlight mean-
ingful clusters. Indeed, for a group of transactions, we prefer to simply produce
the single itemset which is composed of the maximal number of items shared by
the group. The key step is to capture the maximum amount of similarity among
the data.

This notion is linked to that of a closed itemset in the KDD’s framework. A
closed itemset is a maximal set of items (with respect to set inclusion) shared
by a set of transactions. In Table 1, ABC is a closed itemset whereas AB is not
a closed itemset since we can add item C to all the transactions supporting AB.

Let us note F(X) the frequency ofX that is the number of transactions which
support X. An itemset X is frequent if its frequency is at least the frequency
threshold minfr fixed by the user. Note that we use here an absolute frequency
(a number of examples ≤ |r|) instead of the relative frequency F(X)/|r| in [0, 1].
The frequency is fundamental to extract reliable clusters. It allows to take into
account the “importance” (in term of “weight”) of a candidate cluster and forget
clusters which do not rely on sound relationships within data. A cluster with
too few transactions would not be kept by a user. In Table 1, with minfr = 2,
DE is frequent (its frequency is 3) and DEF is not frequent (its frequency is 1
since only transaction 6 contains DEF ). From large databases, there are efficient
algorithms [2][14] to compute frequent closed itemsets. We have developed such
a software, which, moreover, gives the associated transactions.

These two points (the capture of the maximum amount of similarity - i.e.
closed itemsets - and the notion of frequency) are the minimal properties re-
quired for candidate clusters. After this first selection, we use a cluster evaluation
measure (that we present below) to select a set of meaningful clusters.

2.3 ECCLAT: Extraction of Clusters from Concepts LATtice

Cluster evaluation measure

For the following, X denotes a frequent closed itemset, T the set of trans-
actions associated to X (i.e. transactions supporting X) and L the set of the
frequent closed itemsets.

A relevant cluster has to be as homogeneous as possible and should gather
“enough” transactions. Translated into the usual clustering framework, it means
that we have to maximize an intra-cluster similarity (called here homogeneity)
and minimize an inter-clusters similarity. We use a concentration measure to
limit the overlapping of transactions between clusters (a relevant cluster should
concentrate some transactions).

For homogeneity, we want to favor clusters having many items shared by
many transactions. Homogeneity of a cluster X is computed from its size (i.e.

1 Note that we use a string notation for sets.



its number of items), F(X) and a divergence measure. The divergence is the
number of items not in X, for each transaction of T .

homogeneity(X) =
F(X)× |X |

divergence(X) + (F(X)× |X |)

where divergence(X) =
∑

t∈T |f(t)−X|.
We have 0 ≤ homogeneity(X) ≤ 1. If a cluster is pure (i.e. ∀t ∈ T f(t) =

X), its divergence is equal to 0, and its homogeneity equals 1. The more a cluster
supports transactions with items not belonging to X, the more its homogeneity
leads to 0. Let us remark that the homogeneity of a cluster X depends only on
X and can be computed simultaneously to X.

For concentration, we want to favor clusters having transactions appearing
the least in the whole set of clusters. Concentration limits the overlapping of
transactions between selected clusters. Concentration of a cluster X is defined
by taking into account the number of clusters where each transaction appears.

concentration(X) =
1

F(X)
×
∑
t∈T

1

F ′(t)

where F ′(t) is the number of clusters where t occurs (i.e. absolute fre-
quency of t in L).

We have 0 ≤ concentration(X) ≤ 1. If all transactions of T occur only in
X, then concentration(X) = 1. The more frequent the transactions of T in the
whole set of clusters, the more concentration(X) leads to 0.

Finally, we define the score of a cluster as the average of its homogeneity and
concentration. We have 0 ≤ score(X) ≤ 1.

score(X) =
homogeneity(X) + concentration(X)

2

Let us give a short example: in Table 1, we have homogeneity(DE) =
(3 × 2)/((0 + 1 + 4) + (3 × 2)) = 0.545: transaction 5 has an item which
diverges (i.e. does not belong to the closed DE) and four items diverge for
transaction 6. concentration(DE) = 1/3 × (1/1 + 1/3 + 1/5) = 0.511. Trans-
action 4 only supports the closed itemset DE while transaction 5 supports
three closed itemsets and transaction 6 supports five closed itemsets. Finally,
score(DE) = (0.545 + 0.511)/2 = 0.528.

The idea is to select clusters with high scores and the next paragraph presents
an algorithm for this task.

Clusters procedure: selection algorithm

Ecclat [4] uses the score defined above to select clusters from the frequent
closed itemsets lattice. It has the originality to produce a clustering with a
minimum overlapping between clusters (that we call “approximate clustering”)
or a set of clusters with a slight overlapping. This functionality depends on the
value of a parameter called M . M is an integer corresponding to a number of
transactions that a new selected cluster must classify. With M = 1, we assure



to classify all transactions in at least one cluster (except if minfr is very high).
Nevertheless, a slight overlapping between clusters may appear. M should be set
near 1 if we are interested in discovering meaningful clusters. The more the value
of M increases, the more the overlapping decreases but some transactions may
not belong to any cluster. We refer to these unclustered transactions as trash
(i.e. remaining transactions are grouped in a trash cluster).

The sketch of the algorithm is the following. At first, the score of each cluster
of L is computed. The cluster having the highest score is selected. Then as long
as there are transactions to classify (i.e. which do not belong to any selected
cluster) and clusters remain, we select the cluster having the highest score and
containing at least M transactions not yet classified.

The results of the method are linked to the value of M . In Table 1, with
M = 1, all transactions are classified in four clusters (ABC, DE, AHG and
I). We get a slight overlapping: transaction 6 is ranked in DE and AFG and
transaction 7 belongs to AFG and I. Intuitively, observing transactions 6 and 7
(see Table 1), there is no sound reason to classify them in one cluster or the other.
Note that item A appears in two clusters. With M = 2, we get clusters ABC,
DE and I. There is no overlapping and we obtain a partition. With M = 3,
only two clusters are selected (ABC and DE) and a trash cluster is built with
transactions 7 and 8.

3 Data preparation

The six tables available on the web (http://lisp.vse.cz/challenge/
ecmlpkdd2002/) have been loaded using the relational database management
system (Mysql 3.23.49). We noticed that some attributes were missing for table
biopsy (i.e., delimiters between attributes are missing, which is different from
missing values). For example, the patient of MID#727 and Exam_Date 1990-12-
28 has 6 attributes whereas 8 are expected. Nevertheless, the type of attributes
seem to indicate that, when two attributes are missing, it is a matter of the last
two. We use this table with this assumption.

One advantage of using a relational database is to provide an overview of the
data as we will see below. Such a preliminary inspection based on SQL queries
helps for the understanding of the required data transformations, i.e., to prepare
the data for the data mining task. Let us note that this idea can be carried on
with contingency tables which show the number of tuples (i.e. transactions or
examples) for each value combination of two or more variables that constitute
the table (application in medical data on patients suffering from collagen diseases
is given in [16]). We give below the main transformations that we performed.

3.1 Overview of tables

The table patient contains 771 tuples. There is no missing value. Most of the
patients are males (70,69%).

The table biopsy contains 960 tuples. There are two missing values for the
Exam_Date attribute, four for the Facility attribute, 833 for the Fibrosis
attribute and 841 for the Activity attribute. This large number of missing values



on Fibrosis unfortunately leads to a loss of data to study the relationships
between the stage of liver fibrosis and laboratory examinations. 136 patients had
more than one biopsy. Two tuples have identical values, except for Fibrosis and
Activity attributes which are unknown for one tuple (the patient having ID#251
and the Exam_Date value of 1999-10-13). Surprisingly, there is one hepatitis A
(the patient having ID#103).

The table out-hospital_examinations reports on results of out-hospital
examinations for patients. 31,040 tuples were downloaded (the guide to the hep-
atitis dataset indicates 30,243). There are many missing values for Condition,
Comment1, Comment2, Evaluation and Eval_SubCode attributes. There are also
7,314 (23.56%) missing values for the Exam_Result attribute, 16,051 (51.71%) for
the Unit attribute and 19,315 (62.23%) for the Qualitative_Interpretation
attribute. There are 844 distinct values for the Name attribute, ten of them oc-
cur more than 500 times. The Qualitative_Interpretation attribute has 41
distinct values and, without the help of a physician, we are not able to interpret
some of them (e.g., ******, 10*2, < (+)).

The in-hospital_examinations is a large table (1,565,877 tuples). It stores
results of in-hospital examinations for patients. There are two missing values for
the Exam_No attribute, two for the Exam_Name attribute and 204,424 (13.05%)
for the Exam_Result attribute. The attribute Name has 230 distinct values. This
table gives the numeric value of an examination result and we will use the ta-
ble measurements_in-hospital (see Section 3.2) to get the lower and upper
bounds of these examinations. We remark that the table measurements_in
-hospital contains more potential examinations than those really performed
in-hospital.

3.2 Resulting files

To discover the relationships between the stage of liver fibrosis and laboratory
examinations, transactions are built as follows: each transaction gathers a biopsy
and examinations of the patient associated to this biopsy (in fact, we will see
below that the obtained files have a single biopsy per patient). The idea is to
discover clusters described by examinations (and their results) and which are
pure or almost-pure with regard to the stage of the liver fibrosis. Biopsy features
are not used during the discovery stage so that the combination of examinations
given by a cluster may be a good indicator for estimating the stage of fibrosis.

As out-hospital and in-hospital examinations are not straightly comparable,
we construct two data files: file called bioexaout for examinations out-hospital
and bioexain for examinations in-hospital. The tables out-hospital_examina
tions and in-hospital_examinations show that a same examination can be
performed several times on a same biopsy, sometimes with different results. In
this case, we decide to keep only the examination (with its result) which is the
closest of the date of the biopsy.

The process to obtain bioexaout and bioexain is the following. First, we
joined the tables biopsy and patient for biopsy where the Fibrosis attribute
is known. For the sake of clarity, we deleted three patients (ID#179, ID#597 and
ID#930) for which two or three biopsy have been done (two biopsy for a same



patient can have different Fibrosis values). In this way, an element of a cluster
can as well be seen as a patient or a biopsy and clusters might be easier to
interpret. We also removed the patient of ID#923 because its Fibrosis value
(F3-4) is ambiguous. We get a temporary table called biopat composed of 119
patients. For the Fibrosis attribute, 1 patient has the value F0, 49 have the
value F1, 32 have the value F2, 24 have the value F3 and 13 have the value F4.

Secondly, we joined biopat with out-hospital_examinations to produce
bioexaout and with in-hospital_examinations to produce bioexain. Dur-
ing the join, we computed the number of days between the date of the biopsy
and the date of the examination. For bioexaout, we kept only examinations for
which the Qualitative_Interpretation attribute is known and can straightly
be recoded in + or - values. More precisely, we grouped values 1+, 2+, 3+,
4+ and + in a single value denoted + and we gathered values (-) and - in
the value coded -, other values are ignored. We obtain 1,122 examinations
with values + or - for Qualitative_Interpretation and dealing with the pa-
tients of biopat. Nevertheless, these examinations correspond only to 59 distinct
patients (in other words, some patients of biopat have not examinations in
out-hospital_examinations with an understandable value for Qualitative_
Interpretation). For bioexain, there are 243,653 examinations without miss-
ing values for the Exam_Result attribute and for which the qualitative interpre-
tation can be inferred from measurements_in-hospital. These examinations
concern 118 distinct patients.

Final files are obtained by gathering for each patient all his examinations.
Let us recall that a patient occurs once and corresponds to a biopsy and in
case of several occurrences of an examination for a patient, we keep only the
examination which is the closest of the date of the biopsy. We kept only features
on examinations to better highlight the role of examinations. Table 2 summarizes
the characteristics of bioexaout and bioexain. One examination can lead to
two qualitative results on bioexaout: for instance, we will denote the two results
for the examination HBE-AB by using HBE-AB+ (positive) and HBE-AB- (negative).
On bioexain, three qualitative results can appear for an examination: less than
the lower bound, between the lower and upper bounds, more than the upper
bound. For instance, for the examination GLU, these three values will be denoted
respectively GLU-, GLU= and GLU+. An item is a pair examination / result (e.g.,
HBE-AB-) and the number of items indicated in Table 2 is the number of pairs
observed in a file.

No. of No. of performed No. of distinct No. of
patients examinations examinations items

bioexaout 59 1122 11 17
bioexain 118 243,653 172 308

Table 2. Characteristics of bioexaout and bioexain



4 Results and discussion

The results reported below are achieved by a prototype running on a PC with
900 MB of memory and a 1,7 GHz P4 processor. We start by giving an overview
of the obtained clusters.

About bioexaout, Table 3 shows the number of frequent closed itemsets, the
number of selected clusters, the number of transactions in the trash cluster (0
means there is no trash cluster) and the sizes of clusters according to minfr
and M (see Section 2.3). Ratio is the percentage of selected clusters among the
frequent closed itemsets. MIS means MInimal Size of clusters (i.e. the size of
the smallest cluster), MAS: MAximal Size of clusters (i.e. the size of the largest
cluster) and AVS: AVerage Size of clusters. The size of a cluster is its number of
items. Table 4 presents these results on bioexain.

No. of frequent M No. of Ratio No. of transactions
minfr

closed itemsets selected clusters % in trash
MIS MAS AVS

3 93 1 23 24.73 0 1 6 3.52
3 14 15.05 2 1 6 3.14

5 65 1 21 32.31 1 1 5 3.09
5 9 13.85 2 1 5 2.66

7 44 1 15 34.09 1 1 5 2.6
7 6 13.64 9 1 5 2.33

Table 3. Clusters on bioexaout

No. of frequent M No. of Ratio No. of transactions
minfr

closed itemsets selected clusters % in trash
MIS MAS AVS

53 462,041 1 34 0.007 0 1 20 9.55
10 7 0.001 0 1 20 8.35

59 217,952 1 28 0.013 0 11 19 16.92
10 7 0.003 4 14 19 14.57

65 99,968 1 23 0.023 0 10 17 15.74
10 6 0.006 2 7 17 12

71 43,396 1 19 0.044 0 9 16 14.52
10 5 0.011 9 13 16 12.2

Table 4. Clusters on bioexain

Especially on large data sets (like bioexain), the number of selected clusters
is much lower than the number of frequent closed itemsets. When minfr de-
creases, for an identical value of M , we see that the number of selected clusters
does not increase as much as the number of frequent closed itemsets (in other
words, ratio decreases). With M = 1, generally all transactions are classified.
Let us recall (Section 2.3) that to discover all meaningful clusters it is suitable



to set M to 1. When the value of M increases, we note experimentally a great
decrease of the number of selected clusters.

In order to discover combinations of examinations associated to a stage of
fibrosis, we would like to rank clusters on their “purity” score, measured according
to the stage of fibrosis. An usual way to measure impurity is to use an entropy
function [11]. Let P = (p1, . . . , p5) be the frequency distribution of the stage of
fibrosis on a cluster (5 stages exist), the entropy of P denoted ϕ(P ) is ϕ(P ) =∑5

i=1 pi × log pi. We know that the lower ϕ(P ) is, the purer the cluster is.
ϕ(P ) = 0 if and only if ∃ i with pi = 1 (i.e. there is a single value for the stage
of fibrosis).

We give now some clusters among them maximizing the purity according
to the stage of fibrosis. On examples given below, each line corresponds to a
cluster: its definition (i.e. a set of pairs examination / result), its frequency and
the frequency distribution of the stage of fibrosis (a colon is inserted between
these elements). On bioexaout, with minfr = 3, we are able to produce pure
clusters but with few examples. For instance, the following cluster gathers 4
patients:

HBC-AB+,HBS-AG+,HBE-AG-,HBE-AB+ : 4 : F0=0.0 F1=0.0 F2=0.0 F3=100.0 F4=0.0

Some clusters seem more associated with severe stages of fibrosis. For in-
stance:

HBS-AB+,HBE-AG-,HBE-AB+ : 5 : F0=0.0 F1=0.0 F2=0.0 F3=25.0 F4=75.0
HBC-AB+,HBE-AG-,HBE-AB+ : 8 : F0=0.0 F1=14.29 F2=0.0 F3=57.15 F4=28.57
HBE-AB+ : 13 : F0=0.0 F1=16.67 F2=16.67 F3=41.67 F4=25.0

The clusters depicted above seem to indicate that HBE-AB+ may have a
great role with regard to severe stages. Let us note that these three clusters
are described only by five items: HBC-AB+, HBE-AB+, HBE-AG-, HBS-AB+ and
HBS-AG+ Some other clusters conclude rather on mild stages:

HBE-AB-,HCV5’NCRRT-PCR+,HBE-AG- : 7 : F0=0.0 F1=66.67 F2=33.33 F3=0.0 F4=0.0
HBE-AB-,HBE-AG+ : 13 : F0=0.0 F1=58.33 F2=41.67 F3=0.0 F4=0.0
HBE-AB-,HCV5’NCRRT-PCR+,HBE-AG-,HBS-AG- : 6 : F0=0.0 F1=80.0 F2=20.0 F3=0.0

F4=0.0
HBE-AG+ : 16 : F0=0.0 F1=53.33 F2=40.0 F3=6.67 F4=0.0

It should be useful to perform statistical analysis in order to confirm (or not)
these observations. Due to the space limitation,2 we do not give here all the
selected clusters (Tables 3 and 4 indicate their main characteristics).

As bioexain has a rather large number of items and data are highly corre-
lated, the computation of clusters require a value for minfr not too low. That
leads to produce clusters quite general having a mixture of degrees of fibrosis.
Clusters are described with more items than on bioexaout (see Tables 3 and 4
for more details). Here are some examples:

ALB=,CL=,K=,oudan+,G-GTP= : 54 : F0=0.0 F1=56.60 F2=30.19 F3=7.55 F4=5.66
ALB=,CL=,LAP=,nyuubi=,oudan+,U-BIL=,U-GLU=,U-KET=,U-PH+,U-PRO=,U-RBC=,

2 All results are available for readers, just contact the authors.



U-SG+,G-GTP= : 53 : F0=0.0 F1=55.77 F2=30.77 F3=9.61 F4=3.85
ALB=,CRP=,K=,oudan+,U-BIL=,U-GLU=,U-PH+,U-PRO=,U-RBC=,U-SG+,F-A2.GL= :

53 : F0=1.92 F1=55.77 F2=26.92 F3=15.38 F4=0.0
CHE=,CL=,D-BIL=,HCV-AB=,I-BIL=,K=,LAP=,oudan+,T-BIL=,UA=,UN=,NA= : 56 :

F0=1.79 F1=41.07 F2=35.71 F3=14.29 F4=7.14
D-BIL=,nyuubi=,oudan+,T-BIL=,U-BIL=,U-GLU=,U-KET=,U-PH+,U-PRO=,U-RBC=,

U-SG+,G-GTP= : 56 : F0=0.0 F1=45.45 F2=40.0 F3=12.73 F4=1.82

Let us note that most of the selected pairs examination / result concern the
normal values of examinations. In a cluster, there are always few examinations
with a non-normal value. On the experimentation with minfr = 53 and M = 1
(34 selected clusters), only three non-normal values arise: oudan+, U-PH+ and
U-SG+. We do not know if these examinations have a special role or if they are
included in a cluster because they are common. It is likely that it should be
useful to mine bioexain with a lower value for minfr.

5 Conclusion

Using a new method, suitable for categorical data, to discover meaningful clus-
ters, we have searched factors for estimating the stage of liver fibrosis from
hepatitis data. These factors are combinations of examinations performed on pa-
tients. The number of selected clusters (between 5 and 34, according to minfr,
M and the data set) is much lower than the number of potential clusters given
by conceptual classification methods or frequent closed itemsets.

On out-hospital examination data, this work suggests an interesting role of
some examinations (e. g., HBC-AB+, HBE-AB+ and HBE-AG- seem more associated
with severe stages). On in-hospital examination data, except three non-normal
examinations values (oudan+, U-PH+ and U-SG+), the other selected examinations
have a normal value, which might make the medical interpretation of the asso-
ciated clusters difficult. It should be useful to have more biopsy with a known
value for the stage of fibrosis (due to missing values on this attribute, we had
to remove in this work many biopsy of the Table biopsy). More biopsy data
would solely lead to a very slight increase of the computation cost because the
algorithmic cost of such methods is chiefly due to the number of items.
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