
Sequence Mining under Multiple Constraints

Nicolas Béchet
Université de Bretagne-Sud
IRISA, Campus de Tohannic

56017 Vannes, France
nicolas.bechet@irisa.fr

Peggy Cellier
INSA de Rennes, IRISA

Campus de Beaulieu
35042 Rennes, France

peggy.cellier@irisa.fr

Thierry Charnois
Université Paris 13

Sorbonne Paris cité, LIPN
93430 Villetaneuse, France

thierry.charnois@lipn.univ-
paris13.fr

Bruno Crémilleux
Université de Caen Basse-Normandie, GREYC

14032 Caen Cedex 5, France
bruno.cremilleux@unicaen.fr

ABSTRACT
In this paper, we address the problem of mining sequential
patterns under multiple constraints. Unlike classical algo-
rithms, our approach handles various types of constraints
which are not only numeric but also symbolic and syntactic.
These multiple constraints enable us to express a large scope
of knowledge to focus on interesting patterns. We illustrate
our approach with the detection of gene–rare disease rela-
tionships from biomedical texts for the documentation of
rare diseases.

Keywords
Sequential data mining, constraint-based data mining, pat-
tern discovery, information extraction, natural language pro-
cessing

1. INTRODUCTION
Rare diseases are a major public health issue. A rare

disease (RD) is a disease affecting fewer than 1 in 2,000
persons. There are between 6,000 and 8,000 RDs affecting
about 30 million people in Europe and much more in the rest
of the world. This context represents a strong motivation
to address the problem of extracting gene–RD relationships
from text collection such as the PubMed repository dealing
with more than 24 million biomedical publications.

The discovery of gene–RD relationships requires to take
into account the order of appearance between the elements
of a text. Sequential pattern mining is a well-known data
mining technique [13] that aims at extracting correlations
between events (called items) through their order of appear-
ance (i.e. the so-called sequential patterns) in a database
of sequences. It is one of the most studied and challeng-
ing tasks in data mining with a wide range of applications
and domains. For effectiveness and efficiency considera-
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tions, many authors [2, 17] have promoted the use of con-
straints to focus on the most promising patterns according
to the interests given by the final user. Many kinds of con-
straints are tackled such as regular expression constraints in
SPIRIT [4], aggregate constraints [10], gap constraints [7].
A survey of various constraints can be found in [2]. Sev-
eral classes of constraints have been studied [2] and there
are efficient methods for specific kinds of constraints such
as the well-known (anti-)monotonic constraints [10] or con-
straints based on frequency measures [11]. Another direction
of improvements is to reduce the set of patterns by select-
ing a small subset of patterns with the same expressiveness
power. Closed patterns are often used to this end because
a closed pattern summarizes an equivalence class, i.e. a set
of patterns which are mapped to the same set of objects
(or transactions) of a database. Our method takes bene-
fit of these two research directions by combining multiple
constraints with closed patterns.

The recent trend of hybridization of data mining and Nat-
ural Language Processing (NLP) techniques has shown the
interest of handling various constraints to put characteristics
coming from the NLP area into the data mining process in
order to discover meaningful sequential patterns from tex-
tual literature. As an example, dealing with the biomedi-
cal literature asks constraints addressing features linked to
text characteristics such as scope, length, gap, membership
(specify a subset of items), association (a relation between
two classes of items must be satisfied1). Moreover, as the
number of sequential patterns generally remains large, the
user prefers the safe summary produced by the closed pat-
terns. As far as we know, there is no method to extract se-
quential patterns when the above constraints are combined
together. Our goal is to fill this gap.

The contribution of this paper is to design a method pro-
viding the correct and complete set of sequential patterns
satisfying conjunctions of various syntactic and symbolic
constraints as exemplified above and including the closed-
ness constraint. Extracting patterns under such constraints
provides a major result to discover linguistic patterns, as for
example patterns highlighting gene–RD relationships. Con-

1An example of the association constraint in NLP is “for
each itemset, a category of words like a verb must be asso-
ciated to its canonical form (called lemma, for instance have
is a lemma of having)”.
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Sequence identifier Sequence
1 〈(a) (b) (c) (d)〉
2 〈(a) (b) (c)〉
3 〈(a b) (d) (b) (c) (d)〉

Table 1: Example of a sequential database.

trary to other related work on the topic, this work addresses
the problem in a broad scope (i.e. a large set of combinations
of constraints are tackled). Experiments on the detection of
gene–RD relationships in text show the impact of different
kinds of constraints offered by our method on the perfor-
mance of this task. In addition, the presented method is
general and can be reused in other applicative contexts.

The rest of the paper is organized as follows. Section 2
presents background knowledge about sequential pattern min-
ing. Section 2 describes our algorithm performing with com-
binations of several kinds of constraints in the sequential
pattern mining process. Section 4 gives the results of the
experimental evaluation.

2. BACKGROUND KNOWLEDGE
Sequential pattern mining is a data mining technique in-

troduced in [13] to find regularities in a sequence database.
Many algorithms have been developed to extract sequential
patterns [9, 13, 16, 18].

In sequential pattern mining, an itemset I is a set of lit-
erals called items. For example, (a b) is an itemset with two
items: a and b. A sequence S is an ordered list of itemsets,
denoted by s = 〈I1 . . . Im〉. For instance, 〈(a b) (d) (b) (c) (d)〉
is a sequence of five itemsets. A sequence S1 = 〈I1 . . . In〉
is included in a sequence S2 = 〈I ′1 . . . I ′m〉 if there exist in-
tegers 1 ≤ j1 < ... < jn ≤ m such that I1 ⊆ I ′j1 ,...,
In ⊆ I ′jn . The sequence S1 is called a subsequence of S2,
and we note S1 � S2. For example, 〈(a) (c)〉 is included
in 〈(a b) (d) (b) (c) (d)〉. A sequence database SDB is
a set of tuples (sid, S), where sid is a sequence identifier
and S a sequence. For instance, Table 1 depicts a sequence
database of three sequences. A tuple (sid, S) contains a se-
quence S1, if S1 � S. The support2 of a sequence S1 in
a sequence database SDB, denoted sup(S1), is the number
of tuples in the database containing S1. For example, in
Table 1 sup(〈(b) (d)〉) = 2, since Sequences 1 and 3 con-
tain 〈(b) (d)〉. A frequent sequential pattern is a sequence
such that its support is greater or equal to a given support
threshold minsup.

The set of frequent sequential patterns can be very large.
Pattern condensed representations, such as closed sequen-
tial patterns [16], have been proposed in order to eliminate
redundancy without loss of information. A frequent sequen-
tial pattern S is closed if there is no other frequent sequen-
tial pattern S′ such that S � S′ and sup(S) = sup(S′).
For instance, with minsup = 1, the sequential pattern
〈(a b)〉 from Table 1 is not closed because sup(〈(a b)〉) =
sup(〈(a b)(d)〉) and 〈(a b)〉 � 〈(a b)(d)〉.

The frequency constraint is likely the most widespread
constraint in the constraint-based pattern paradigm [2]. Un-
fortunately, used alone, frequent patterns generally lack of
interest and in practice many other constraints are useful.
Many constraints will be presented in the following. As an
example, we explain the gap constraint which is less in-

2The relative support is also used: suprel(S1) =
sup(S1)

|SDB|

tuitive than other constraints. A sequential pattern with
a gap constraint [M,N ], denoted by P[M,N ], is a pattern
such as at least M itemsets and at most N itemsets are al-
lowed between every two neighbor itemsets in the matched
sequences. For instance, in Table 1, P[0,1] = 〈(a)(c)〉 and
P[0,2] = 〈(a)(c)〉 are two patterns with gap constraints. P[0,2]

matches three sequences (1, 2 and 3) whereas P[0,1] matches
only two sequences (1 and 2). Indeed, in Sequence 3 there
are two itemsets between the itemset that contains a and the
itemset that contains c and the maximal gap value (there 1)
is not satisfied.

To compute those different kinds of sequential patterns,
there exist several approaches which can be divided into two
groups: pattern growth approaches, such as CloSpan [16],
Bide [14], GAPBIDE [7], CTSP [8], and depth-first search
approaches based on a vertical database format, such as
SPADE [18], CLaSP [5] or [3]. The contribution of this
paper is based on a pattern growth approach, thus more de-
tails about the pattern growth strategy are given in the fol-
lowing section. The vertical database format strategy avoids
several scans of the database and has good performance to
compute frequent or closed sequential pattern. However, ex-
isting algorithms do not include any constraint except the
closure.

3. EXTRACTION OF CLOSED SEQUEN-
TIAL PATTERNS UNDER MULTIPLE
CONSTRAINTS

This section describes our method, CloSPEC (Closed Se-
quential Pattern Extraction under Constraints), to extract
closed sequential patterns satisfying conjunctions of various
syntactic and symbolic constraints. We will see that com-
bining constraints like the gap with closed patterns arises
algorithmic challenges. In addition to the large scope of
these constraints, our method runs on sequences made of
itemsets and not simple items. In the NLP applicative con-
text, it means that a word can be represented by multiple
information (e.g., the word itself, its lemma, its categori-
cal grammar). It enables to provide more useful patterns
because several levels of abstraction can be mixed. As far
as we know, there is no other method combining so many
constraints on sequences made of itemsets.

3.1 The CloSPEC Algorithm
CloSPEC is given in Algorithm 1. It is based on the

pattern-growth approach [6]. The first step extracts the fre-
quent items satisfying the given C set of constraints in order
to build the patterns of size 1. Then, for each frequent pat-
tern of length 1, the projected database is built by removing
infrequent items. The projected database of a pattern P is
the set of sequences of SDB that contain P , removing P
itself. It means that the projected database of a pattern P
contains the suffixes of the sequences of SDB where P is
the prefix. For the sake of reducing the memory space, in
our algorithm the pseudo-projected databases are used. The
pseudo-projected database of a pattern P is the projected
database of P where sequences are stored thanks to pointers
on the SDB instead of a physical copy 3. The process is re-
cursively executed in the PGrowthConstraint procedure
(cf. Algorithm 2).

3For more information, see [6].
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Algorithm 1 CloSPEC(SDB,C )

Inputs: SDB : a sequential database,
C : a set of constraints
Output : The set of closed sequential patterns under con-
straints
1. Build all frequent itemsets of size 1 1-length-Patterns
verifying C
2. For each pattern P of 1-length-Patterns do

(2.1) Build the projected database of P , Pro-
jectedDB[P], where infrequent items have been removed

(2.2) PGrowthConstraint(P, ProjectedSDB[P], C )

In order to explain the PGrowthConstraint procedure,
we present some notations defined in [15]. An I-extension
extends a sequential pattern P by adding an item to an item-
set of P . A S-extension extends P by adding a new itemset
made of 1 item. Let M be the pattern M = 〈(a) (b) (c)〉.
Examples of extensions of M when the item d is added are:

right I-extension left I-extension
〈(a) (b) (c,d)〉 〈(a,d) (b) (c)〉

right S-extension left S-extension
〈(a) (b) (c) (d)〉 〈(d) (a) (b) (c)〉

An occurrence of a sequential pattern P is defined as a
sub-sequence of the SDB matching with P . Algorithm 2
describes the PGrowthConstraint procedure. Its prin-
ciple is to verify if a candidate pattern P satisfies all the
constraints (including the closure) (steps 1-4) and build a
right (I or S)-extension of P with a new item (step 5). First,
PGrowthConstraint checks if (1) there is a sequential pat-
tern P ′ with the same number of occurrences as P 4, (2)
P � P ′ and (3) P ′ is a left (I or S)-extension of P . If such
a pattern P ′ exists, P is not closed and the closed pattern
associated to P will be extracted from P ′, the process can
thus stop (step 1) with a safe pruning approach (the break
statement). Otherwise, the procedure tests if P is closed
according to the CloSpan definition [16]. If not, and if P
satisfies the given constraints, P is added to ClosedHash
(step 4). On the contrary, if it exists a pattern P ′′ with
the same support as P , P � P ′′, and P ′′ is an (I or S)-
extension of P , then P is not closed and thus it is not added
to ClosedHash. Finally, the PGrowthConstraint proce-
dure is recursively called with the right extensions of the
sequential pattern P (step 5).

3.2 Constraint Checking
This section explains how the constraint checking is per-

formed. We start by specifying the (anti-)monotonic con-
straints.

Definition 1 ((Anti-)monotonic constraints). A
constraint C is monotonic if for any pattern P satisfying C
and any pattern P ′ such that P � P ′ then P ′ also satis-
fies C. Respectively, a constraint C′ is anti-monotonic
if for any pattern P satisfying C and any pattern P ′ such
that P ′ � P then P ′ also satisfies C.

According to this definition, it is trivial to prove that the

4The ∪IorS operator means that item x can be an I- or S-
extension of pattern P . nb occ is the number of occurrences
of P .

Algorithm 2 PGrowthConstraint(P , ProjectedDB, C )

Inputs: P : a sequential pattern, ProjectedDB: a pro-
jected database, C : a set of constraints
1. If there exists an item x such as nb occ(x ∪IorS P ) =
nb occ(P ) then Break
2. Compute the right extension of P (I-extension and
S-extension), IR
3. Compute the left extension of P (I-extension and S-
extension), IL
4. If 6 ∃y ∈ IR such as sup(P ∪IorS y) = sup(P )
and 6 ∃z ∈ IL such as sup(z ∪IorS P ) = sup(P )
and P verifying constraints C then

(4.1) Add (sup(P ),P ) to ClosedHash
5. For each item i of IR do

(5.1) Compute ProjectedDBi, the projected database
of P ∪IorS y
(5.2) PGrowthConstraint(P∪IorSy,ProjectedDBi,C )

minimal length constraint is a monotonic constraint and the
minimal support is an anti-monotonic constraint.

Lemma 1. In a pattern-growth based algorithm, if a pat-
tern P satisfies a monotonic constraint, it is useless to test
the extended patterns of P because all the extended patterns
of P satisfy the constraint.

This lemma is inferred from the monotonic constraint defi-
nition.

Lemma 2. In a pattern-growth based algorithm, if a pat-
tern P does not satisfy an anti-monotonic constraint, it is
useless to generate the extended patterns of P because all the
extended patterns of P do not satisfy the constraint.

Again, this lemma is trivial to prove by referring to the def-
inition of an anti-monotonic constraint.

These lemma are precious because they avoid to gen-
erate the extended patterns of P when P satisfies an
(anti-)monotonic constraint. Monotonic constraints allow
to prune patterns before the mining process (by removing
some sequences from the SDB). Anti-monotonic constraints
are more useful by allowing an efficient pruning during the
mining process.

Other constraints handled by CloSPEC are not mono-
tonic or anti-monotonic. However, a nice property of the
pattern growth approach is to enable similar pruning tech-
niques. Introduced in [10], prefix-monotonic and prefix-anti-
monotonic constraints have the same behavior as respec-
tively monotonic and anti-monotonic constraints.

Table 2 summarizes the properties of constraints tack-
led by our approach. Most of these constraints are defined
in [10]. The association constraint is not included in [10] and
is neither monotonic nor anti-monotonic. This constraint
ensures that a relation between two classes of items must be
satisfied. It is particularly useful in applications such as the
case study presented in Section 4.1.

3.3 Closure Computation
Combining the computation of the closure of a pattern

with constraints like the gap is a tricky task. As illustrated
by the following example coming from Table 1, the anti-
monotonic property of the support is lost when the support
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Constraint Monotonic Anti-monotonic Prefix-anti-monotonic

Membership Yes No No
Maximal support Yes No No
Minimal length Yes No No
Minimal scope Yes No No

Minimal support No Yes Yes
Maximal scope No Yes Yes
Maximal length No Yes Yes

Gap No No Yes
Association No No No

Table 2: Monotonic and anti-monotonic properties of constraints

is combined with the gap. Let us consider a gap constraint
[0, 1] and minsup = 2. With data on Table 1, the support of
the closed pattern P1 = 〈(a) (b) (c)〉 is 3 and the support of
the closed pattern P2 = 〈(a) (c)〉 is 2 (in Sequence 3, there
are two items between a and c and thus Sequence 3 does not
support P2). Thus P2 � P1 whereas sup(P2) < sup(P1). In
this example, we see that the combination of the support and
gap constraints does not give an anti-monotonic constraint.
As the anti-monotonic property of support is usually used
to compute the closed patterns, we understand that we have
to design other techniques. In the literature, the problem is
circumvented by technique such a new definition of the clo-
sure like in the GAPBIDE algorithm [7] or CTSP [8]. In
those approaches the notion of closed pattern is based on
the contiguously inclusion between patterns leading to re-
covering the anti-monotonic property of support. However,
this new definition provides extra patterns that are not use-
ful. Following our running example, GAPBIDE produces
the patterns P3 = 〈(b) (c) (d)〉 and P4 = 〈(b) (d)〉 whereas
P4 � P3 and these two patterns have the same support: P4

should not be produced. Another drawback of GAPBIDE is
that it is not able to address itemsets, only simple items in
sequences are tackled [7]. On the contrary, CloSPEC keeps
the usual closure and thus avoiding redundancy.

This section shows how CloSPEC computes the usual clo-
sure for itemset sequences and various constraints given by
the user. The closure computation of a sequential pattern
with CloSPEC has two steps. The first step is the compu-
tation of the extended patterns of a sequential pattern (Sec-
tion 3.3.1). The second step manages the closed sequential
patterns in the hash-table ClosedHash which contains trees
of closed sequential patterns (Section 3.3.2).

3.3.1 Right and Left Extension Computations of a
Sequential Pattern

To check if a sequential pattern is closed, we
need to compute its possible extended patterns w.r.t.
the SDB. Let us consider the SDB which con-
tains S1 = 〈 (a) (d e) (a b c d) (e) 〉 and
S2 = 〈 (a b) (d) (a b c d) (e f) 〉 ; and the pattern
P5 = 〈 (d) (b c) 〉. The possible extended patterns of P5

w.r.t SDB are:
• with a left I-extension: none ;

• with a left S-extension, two patterns: 〈 (a) (d) (b c) 〉
and 〈 (b) (d) (b c) 〉 ;

• with a right I-extension, one pattern: 〈 (d) (b c d) 〉 ;

• with a right S-extension, two patterns: 〈 (d) (b c) (e) 〉
and 〈 (d) (b c) (f) 〉.

The new pattern obtained by adding the item d with the
right I-extension has the same support as P5, thus P5 is not
closed.

Dealing with itemsets instead of items in sequences implies
to modify the pruning step to take into account the occur-
rences of sequential patterns. If there is a pattern P ′ such
that for each occurrence of a pattern PA = 〈 I1 . . . In〉
with I1 = ( i1 . . . ik) we get: either P ′ = 〈I ′1 . . . In〉 with
I ′1 = (x i1 . . . ik), or P ′ = 〈(x) I1 . . . In〉, with x an item,
then PA can be safely pruned (step 1 in Algorithm 2).

3.3.2 Insertion in Tree of Closed Sequential Patterns
The left and right extension computation (I-extension and

S-extension) allows a first pruning by reducing the number
of patterns. It follows the principle used by the GAPBIDE
algorithm (the latter only tackles the gap constraint). How-
ever, unclosed patterns may still exist as illustrated by the
following example. Let us consider the SDB which contains
S3 = 〈 (a)(a b c)(c) 〉 and S4 = 〈 (a)(a b c)(c e) 〉 ; and
the pattern P6 = 〈 (a)(c) 〉. P6 has neither left nor right
extension. However, P6 is not closed because there exists
the pattern P7=〈 (a)(a b c)(c) 〉 with the same support and
P6 � P7.

To solve this issue, we introduce an hash-table ClosedHash
whose key is the support of a pattern and the value a lex-
icographical tree gathering all sequential patterns with the
same support as the key value of the hashtable, satisfying
all the constraints and with no extended patterns. Three
situations are encountered to insert a pattern P in the tree:

1. if P is included in an already existing pattern in the
tree, nothing to do ;

2. if it exists in the tree a pattern P ′ such that P ′ � P , we
need to reorganize the tree in order to add the pattern ;

3. if P is not included in the tree, we need to add it.

For instance, let us consider the tree in Figure 1(a). This
tree5 contains the current patterns having a support = 2.
The three situations described above are respectively de-
picted by Figures 1(b), (c) and (d). Added patterns from
Figure 1(a): 〈 (a)(e) 〉, 〈 (b)(a)(d) 〉, 〈 (d)(e) 〉 are depicted
by the dark gray nodes. Finally, a closed sequential pattern
is given by browsing the tree from the root node to a leaf
node. As a result, all paths of all trees of the hash-table
from the root node to the leaf nodes provide the correct
and complete set of closed sequential patterns and then also
satisfying the given multiple constraints.
5In order to simplify the example, we only present the in-
sertion of sequential patterns of items (instead of itemsets).
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Figure 1: Insertion examples of patterns in a tree of closed patterns

4. EXPERIMENTATIONS
This section presents the extraction of closed sequential

patterns under multiple constraints to discover relations be-
tween genes and rare diseases. Experiments have been con-
ducted on texts from biological and medical literature.

4.1 Case Study

4.1.1 Settings
We experiment our method on a corpus created from

the PubMed database by using the HUGO6 dictionary
and the Orphanet dictionary to query the database to
get sentences containing at least one gene name and one
disease name. 17, 527 sentences were extracted in this
way. We labelled the gene and rare disease (RD) names
thanks to these two dictionaries. For instance, the sentence
“<disease>Muir-Torre syndrome<\disease> is usually
inherited in an autosomal dominant fashion and associated
with mutations in the mismatch repair genes, predominantly
in <gene>MLH1<\gene> and <gene>MSH2<\gene>
genes.” contains one recognized RD, and two recognized
genes. From the 17,527 sentences, we randomly extract 200
sentences as a testing corpus, the remaining sentences being
the training corpus.

4.1.2 Sequential Pattern Extraction
Sequences of the SDB are the sentences of the training cor-

pus: an itemset corresponds to a word of the sentence. We
carry out a Part-Of-Speech tagging of the sentences thanks
to the TreeTagger tool [12]. In the sentences, each word is re-
placed by its lemma, except for gene names (respectively dis-
ease names) which are replaced by the generic item GENE
(respectively DISEASE). Note that unlike machine learn-
ing based approaches, relations (e.g. gene-disease relations)
are not annotated, but are discovered.

In order to discover sequential patterns, we use usual
constraints such as the minimal frequency and the mini-
mal length constraints and other useful constraints express-
ing some linguistic knowledge such as the membership and
the association constraints. The goal is to retain sequen-
tial patterns which convey linguistic regularities (e.g., gene-
rare disease relationships). Our method offers a natural way
to simultaneously combine in a same framework these con-
straints coming from various origins. We briefly sketch them.

6www.genenames.org

• The minimal frequency. Three values of minimal fre-
quency have been experimented: 0.5% (88 sequences),
0.2% (35 sequences), and 0.05% (8 sequences).

• The minimal length. The aim of this constraint is to
remove sequential patterns that are too small with re-
spect to the number of items (number of words) to
provide relevant linguistic patterns. We tested this
constraint with a value set to 4 and without this con-
straint (i.e., no minimal size value).

• The membership. This constraint enables to filter out
sequential patterns that do not contain some selected
items. For example, we expressed that the extracted
patterns must contain at least three items expressing
the linguistic relation: GENE, DISEASE and (noun
or verb).

• The association. This constraint expresses that all se-
quential patterns must satisfy a relation between two
classes of items. As an example, this constraint en-
ables to express that pattern containing a verb item
or a noun item must also contain its grammatical cat-
egory or its lemma.

• The maximal scope. This constraint corresponds to
the maximal value of the linguistic scope of a pattern.
We set a maximal scope value of 20. It means that the
maximal number of itemsets between the first item-
set and the last itemset of pattern having gene-RD
relationships is 20 (corresponding to 20 words in the
sentence).

• The gap. We conducted experiments with a gap value
(chosen empirically at [0,10]) and without this con-
straint.

• The closure. As already said, in order to exclude re-
dundancy between patterns, we used closed patterns.

4.1.3 Applying patterns
The patterns extracted from the training corpus are ap-

plied onto the testing corpus as linguistic patterns to dis-
cover relations between genes and rare diseases.

4.2 Quantitative Results
This section reports experiments showing the impact of

the constraints on the number of extracted patterns and the
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quality of the results. We also provide quantitative results
w.r.t. CloSpan7 a well-known and state-of-the-art algorithm
to extract closed sequential patterns [16].

4.2.1 Impact of Constraints
Table 3 indicates the number of extracted sequential pat-

terns with respect to several values of gap, minsup and
minlgth. Table 4 gives the number of extracted sequential
patterns that are validated by an expert. In order to simplify
the pattern validation, we first gather sequential patterns by
nouns and by verbs. Then, the expert has to validate nouns
and verbs expressing the notion of causality (with the pos-
sibility to directly access to sequential patterns having the
given noun or verb). Finally, only sequential patterns hav-
ing a verb or a noun expressing the notion of causality are
considered like validated sequential patterns.

As expected on this example, the constraint with the most
important impact on the reduction of the number of patterns
is the support threshold minsup (reduction between 80% and
90%). This is easily explained by the choice of the threshold
values. The two other constraints have a rather minor im-
pact on the number of patterns (reduction between 2% and
8%). Note that the number of patterns with a gap constraint
can be higher than the number of patterns extracted with
no gap constraint. The explanation is the application of the
closure operator after the application of the gap constraint.

gap=[0,10] no gap

minlgth=4
no

minlgth=4
no

minsup minlgth minlgth

0.50% 22 794 24 888 22 084 23 823
0.20% 126 777 133 533 130 579 138 175
0.05% 1 493 914 1 530 085

Table 3: Number of extracted sequential patterns
with respect to three constraints: minsup, gap and
minlgth.

gap=[0,10] no gap

minlgth=4
no

minlgth=4
no

minsup minlgth minlgth

0.50% 6 310 6 346 6 156 6 193
0.20% 54 429 54 512 56 290 56 404
0.05% 416 786 416 533

Table 4: Number of validated sequential patterns
with respect to three constraints: minsup, gap and
minlgth.

Table 5 presents the evaluation of the validated patterns
extracted according to the support and gap constraints. Ta-
ble 6 gives the evaluation of the validated patterns extracted
with the support and minimum length constraints.

About the support threshold, the lower the support thresh-
old is, the greater the recall. Indeed, the lower the support
threshold is, the greater the number of extracted patterns.
It implies potentially more discovered biomedical relations
in the testing corpus and thus less false negative errors.
About the gap constraint, two cases arise. When the num-
ber of patterns is greater with a gap constraint than without
7We use the implementation of Illimine available there:
http://illimine.cs.uiuc.edu

gap constraint, the recall value can be greater without gap
constraint (see minsup=0.5%). When the number of pat-
terns is lower with a gap constraint than without gap con-
straint, some irrelevant patterns can be extracted without
gap constraint, which implies false positive errors and thus
the precision value can be greater with a gap constraint (see
minsup=0.2%). About the minimum length constraint, the
longer the pattern is, the greater the recall, but the lower
the precision.

minsup gap recall precision f-score

0.50% [0,10] 0.37 0.67 0.48
0.50% no gap 0.46 0.69 0.55
0.20% [0,10] 0.50 0.65 0.56
0.20% no gap 0.53 0.64 0.58
0.05% [0,10] 0.65 0.66 0.65

Table 5: Evaluation of the validated patterns ex-
tracted with a support threshold and a gap con-
straint.

minsup minlgth recall precision f-score

0.50% all 0.37 0.67 0.48
0.50% 4 0.36 0.68 0.47
0.20% all 0.50 0.65 0.56
0.20% 4 0.48 0.67 0.56
0.05% all 0.65 0.66 0.65
0.05% 4 0.64 0.66 0.65

Table 6: Evaluation of the validated patterns ex-
tracted with a support threshold and a minimum
length constraint.

4.2.2 Comparison with CloSpan
CloSpan being one of the state-of-the-art algorithms to

extract closed sequential patterns [16], it appears interest-
ing to provide results on a quantitative comparison between
CloSpan and CloSPEC. Nevertheless, CloSpan extracts only
closed sequential patterns according to the minimal support
constraint. Thus, CloSpan is unable to provide the vari-
ous sets of patterns under multiple constraints processed by
CloSPEC (except if a post-treatment is performed on the
output of CloSpan). On the following, we compare, accord-
ing to the number of extracted patterns and the runtime,
CloSPEC (which produces only useful patterns according to
the user’s defined constraints) and CloSpan which can be
considered as a baseline method.

The dataset for these experiments is the testing corpus
presented in Section 4.1. In order to evaluate the interest of
the different constraints, three versions of our algorithm are
used:

• CloSPEC M: the proposed algorithm with monotonic
constraints: minlgth=3 and two membership constraints
(item GENE and item RARE DISEASE) ;

• CloSPEC A: the proposed algorithm with anti-monotonic
constraints: maxlgth=5 and gap=[2,4] ;

• CloSPEC M+A: the proposed algorithm with a mono-
tonic constraint (minlgth=3) and an anti-monotonic
constraint (gap=[2,4]).
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minsup CloSpan CloSPEC CloSPEC CloSPEC
M A M+A

30% 7 354 40 125 23
25% 16 473 40 125 23
20% 42 692 98 171 42
15% 137 178 277 265 81
10% 658 947 4 424 469 208
5% 8 469 431 58 285 951 544

Table 7: Number of extracted sequential patterns.

Figure 2: Runtimes according to the support.

Table 7 reports the number of extracted sequential pat-
terns for each approach. A major result is that the number
of extracted patterns is significantly reduced when apply-
ing constraints (the reduction is about 99%). This result is
highly important when the patterns will be examined by a
human like in the NLP application presented in Section 4.1.
The advantage of our method w.r.t CloSpan is that the con-
straints are directly integrated into the computation without
any post-treatment.

Figure 2 depicts the runtimes of each version of our
method and CloSpan in order to compare the mutual ben-
efits (note the logarithmic scale on the Y-axis). With
anti-monotonic constraints, our method significantly reduces
the runtime (up to 3 order of magnitude with low sup-
port values). The major result is the comparison between
CloSPEC M+A and CloSpan: CloSPEC M+A runs faster
than CloSpan (again, up to 3 orders of magnitude). This is
a notable result because the task performed by CloSPEC
M+A – which is a combination of monotonic and anti-
monotonic constraints – is much more complex than the task
done by CloSpan Recalling that a combination of a mono-
tonic and an anti-monotonic constraints does not provide a
constraint with (anti-)monotonic property.

Taken as a whole, these experiments show the interest of
CloSPEC which extracts useful patterns (according to the
user’s defined constraints) and in a shorter runtime than
CloSpan.

5. CONCLUSION
In this paper, we have proposed CloSPEC, a method pro-

viding the correct and complete set of patterns satisfying
conjunctions of various syntactic and symbolic constraints,
including the closedness constraint. These constraints, such
as the scope, length, gap or membership, are crucial for NLP
tasks based on pattern mining, like the discovery of linguistic
patterns highlighting gene–RD relationships. We have con-

ducted experiments showing the impact of different kinds of
constraints and quantifying the advantages (number of ex-
tracted patterns, running time) w.r.t. the state-of-the-art.
The method is general and can be used in other applica-
tive contexts. A further work is to combine in a general
framework our method handling multiple constraints with
techniques based on data reduction allowing to reduce the
search space with specific kinds of constraints [1].
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