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ABSTRACT
Discovering pattern sets or global patterns is an attractive
issue from the pattern mining community in order to provide
useful information. By combining local patterns satisfying
a joint meaning, this approach produces patterns of higher
level and thus more useful for the end-user than the usual
local patterns. In parallel, recent works investigating rela-
tionships between data mining and constraint programming
(CP) show that the CP paradigm is a powerful framework to
model and mine patterns in a declarative and generic way.
We present a constraint-based language which enables us to
define queries in a declarative way addressing patterns sets
and global patterns. By specifying what the task is, rather
than providing how the solution should be computed, it is
easy to process by stepwise refinements to successfully dis-
cover global patterns. The usefulness of the approach is
highlighted by several examples coming from the clustering
based on associations. All primitive constraints of the lan-
guage are modeled and solved using the SAT framework.
We illustrate the efficiency of our approach through several
experiments.

Categories and Subject Descriptors
H.2.8 [Information Systems]: data mining

General Terms
Declarative approach, Constrained-based language

Keywords
Pattern set mining, Clustering, SAT modeling and solving.

1. INTRODUCTION
The process of extracting useful patterns from data, called

pattern mining, is an important tool for data analysis and
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has been used in a wide range of applications and domains.
A large amount of work has been developed and many pat-
tern extraction problems are now identified and understood
from both theoretical and computational perspectives. Lo-
cal pattern discovery has become a growing field [20] and
several paradigms are available for producing extensive col-
lections of patterns such as the constraint-based pattern
mining [21] or condensed representations of patterns [4]. Be-
cause of the exhaustive nature of the techniques, the pattern
collections provide a fairly complete picture of the informa-
tion content of the data. However, the approach suffers from
limitations. First, the collections of patterns still remain too
large for an individual and global analysis performed by the
data analyst. Secondly, the so-called local patterns repre-
sent fragmented information whereas patterns expected by
the data analyst require to consider simultaneously several
local patterns. That is why combining local patterns to get
global patterns is highly attractive.

The data mining literature includes several methods to
take into account the relationships between patterns and
produce global patterns or pattern sets [5, 10]. Recent ap-
proaches - constraint-based pattern set mining [5], pattern
teams [16] and selecting patterns according to the added
value of a new pattern given the currently selected patterns
[3] - aim at reducing the redundancy by selecting patterns
from the initial large set of local patterns on the basis of their
usefulness in the context of the other selected patterns. Nev-
ertheless, these methods are mainly based on the reduction
of the redundancy (i.e., basically, the overlap between the
data covered by the patterns [5]) or specific aims such as
classification processes. The difficulty of the task may ex-
plain the use of heuristic functions and the lack of complete
and correct methods to mine global patterns. Indeed, min-
ing local patterns requires the exploration of a large search
space but mining global patterns is even harder because so-
lutions satisfying each pattern must be compared. Clearly,
the lack of generic approaches restrains the discovery of use-
ful global patterns because the user has to develop a new
method each time he wants to extract a new kind of global
patterns. It explains why this issue deserves our attention.

In this paper, we propose a constraint-based language to
discover patterns combining several local patterns. The key
idea is to propose a declarative and generic approach to ask
queries: the user models a problem by specifying a set of
constraints and expresses his queries thanks to constraints
over terms built from constants, variables, operators, and



function symbols. Queries and built-in constraints of the
language are encoded and solved using the SAT framework.
Our approach takes benefit of the recent progress on cross-
fertilization between data mining and Constraint Program-
ming [12, 13, 14, 23]. The definition of a constraint-based
language offers the great advantage to provide a declarative
method to address different pattern mining problems: it is
enough to change the specification in term of constraints.
We illustrate the approach by several examples coming from
the clustering based on associations. With simple query re-
finements, the data analyst is able to easily produce clus-
terings satisfying different properties. By specifying what
the task is, rather than providing how the solution should
be computed, the process greatly facilitates the search of
global patterns and the discovery of knowledge.

This paper is organized as follows. Section 2 describes the
constraint-based language and shows how queries and con-
straints can be defined using terms and built-in constraints.
Starting from the clustering example, Section 3 depicts the
process of successive refinements which enables us to eas-
ily address several kinds of clustering and the discovery of
global models. Section 4 describes how queries and built-in
constraints of the language are modeled and solved using
the SAT framework. Section 5 demonstrates the efficiency
of our approach through several experiments. We review
related work in Section 6.

2. A CONSTRAINT-BASED LANGUAGE
This section describes the constraint-based language we

propose. Terms are built using constants, variables, opera-
tors, and function symbols. Constraints are relations over
terms that can be satisfied or not. The data analyst can
define new function symbols. We show how queries and
constraints can be written using built-in constraints.

2.1 Definitions and example
Let I be a set of n distinct literals called items, an item-

set (or pattern) is a non-null subset of I. The language
of itemsets corresponds to LI = 2I\∅. A transactional
dataset is a multi-set of m itemsets of LI . Each itemset,
usually called a transaction or object, is a database en-
try. For instance, Table 1 gives a transactional dataset T
with m=11 transactions t1, . . . , t11 described by n=8 items
A,B,C,D,E, F,G,H. Interestingness measures such as the
frequency and the area [9] are commonly used to evaluate
the relevance of patterns.

The goal of constraint-based pattern mining is to discover
all the patterns of LI satisfying a given constraint. The rest
of this section depicts our proposition to express constraints.

2.2 Terms
Terms are built from constants, variables, operators, and

function symbols:
- Constants are either numerical values or items (as A) or
patterns (as {A,B}) or transactions (as t7).
- Variables, notedXi, for 1 ≤ i ≤ k, represent the unknown
patterns.
- Operators can be set ones (as ∩,∪, \), or numerical ones
(as +,−,×, /).
- Function symbols involve one or several terms.

2.2.1 Built-in function symbols

Trans. Items
t1 A D F
t2 A E F
t3 A E G
t4 A E G
t5 B E G
t6 B E G
t7 C E G
t8 C E G
t9 C E H
t10 C E H
t11 C F G H

Table 1: Transactional dataset T .

The constraint based language owns predefined (built-in)
function symbols1 like:

- cover(Xi) = {t | t ∈ T , Xi ⊆ t} is the set of transactions
covered by Xi.

- freq(Xi) = | {t | t ∈ T , Xi ⊆ t} |
- size(Xi) = | {j | j ∈ I, j ∈ Xi} |
- overlapItems(Xi, Xj) = | Xi ∩ Xj | is the number of

items shared by both Xi and Xj .
- overlapTransactions(Xi, Xj) = |cover(Xi)∩cover(Xj) |

is the number of transactions covered by Xi and Xj .

2.2.2 User-defined function symbols
The data analyst can define new function symbols using

constants, variables, operators and existing function symbols
(built-in or previously defined ones). Examples:

- area(Xi) = freq(Xi)× size(Xi)
- coverage(Xi, Xj) = freq(Xi ∪Xj)× size(Xi ∩Xj)
Interestingness measures can be straightforwardly defined.

Here is the example of the growth-rate well-used in contrast
mining [22]. Let D1, D2 ⊂ T be 2 sets of transactions (i.e.,
classes) and freq’(Xi, Dj) the frequency of Xi into Dj , the

growth-rate of Xi in D1 is gr1(Xi) = |D2|× freq’(Xi,D1)
|D1|× freq’(Xi,D2)

2.3 Constraints and Queries
Constraints are relations over terms that can be satisfied

or not. There are three kinds of built-in constraints:
i) numerical constraints: <, ≤, =, 6=, ≥, >. Examples:

- freq(X1) ≤ 10
- size(X2) = 2× size(X3)
- area(X1) < size(X2)× freq(X3)

ii) set constraints like: =, 6=, ∈, /∈, ⊂, ⊆. Examples:
- A ∈ X1

- X1 ∪X2 ⊂ X3

- X1 = X2 ∩X4

iii) dedicated constraints like:
- closed(Xi) is satisfied iff Xi is a closed2 pattern.
- coverTransactions([X1, ..., Xk]) is satisfied iff each trans-

action is covered by at least one pattern (
⋃

1≤i≤k cover(Xi)=T )

- coverItems([X1, ..., Xk]) is satisfied iff every item be-
longs to at least one pattern (i.e.

⋃
1≤i≤kXi = I).

- canonical([X1, ..., Xk]) is satisfied iff for all i s.t. 1≤i<k,
pattern Xi is less than pattern Xi+1 with respect to the
lexicographic order.

1Only function symbols (and constraints) used in Section 3 are
introduced in this paper.
2Let Tri be the set of transactions covered by pattern Xi. Xi is
closed iff Xi is the largest (⊂) pattern covering Tri.



Queries are formulae built using constraints and logical
connectors: ∧ (conjunction) and ∨ (disjunction).

3. MINING BY REFINING QUERIES
A major strength of our approach is to provide a simple

and efficient way to declare and refine queries. In prac-
tice, the data analyst starts by writing a first query Q1.
Then, he successively refines the query (deriving Qi+1 from
Qi) until he considers that relevant information has been
extracted. We illustrate this approach with the clustering
problem. Clustering aims at partitioning data into groups
(clusters) so that transactions are similar inside each cluster
but different between clusters [8]. We selected clustering be-
cause it is an important and popular data mining task and,
by nature, clustering proceeds by iteratively refining queries
until a satisfactory solution is found. Our approach is also
well-suited to integrate constraints handled in constraint-
based clustering [1, 2].

3.1 Modeling a clustering query
The closed patterns are well-designed for clustering based

on associations because a closed pattern gathers the max-
imum amount of similarity between a set of transactions.
Thus, a closed pattern is a candidate cluster. The standard
clustering problem can then be formalized as: “to find a set
of k closed patterns X1, X2, ..., Xk (i.e., clusters) covering
all transactions without any overlap on these transactions”.

Our constraint-based language offers the constraints to
express this query: the closed(Xi) constraints enforce each
unknown pattern Xi to be closed, the coverTransactions

constraint ensures to cover all the transactions. To avoid an
overlap between transactions, we add for each couple of pat-
terns (Xi, Xj) s.t. i<j the overlapTransactions(Xi, Xj)=0
constraint. This constraint states that there exists no trans-
action covered by both Xi and Xj .

Moreover, a clustering problem intrinsically owns a lot of
symmetrical solutions. Let s = (p1, p2, ..., pk) be a solu-
tion containing k patterns pi, any permutation σ of these
k patterns σ(s) = (pσ(1), pσ(2), ..., pσ(k)) is also a solution.
The canonical([X1, ..., Xk]) constraint is used to avoid com-
puting symmetrical solutions. This constraint ensures that,
for all i s.t. 1 ≤ i < k, pattern Xi is before pattern
Xi+1 with respect to the lexicographic order. The canoni-

cal([X1, ..., Xk]) constraint plays an important role. As for
a clustering involving k clusters, the number of symmetrical
solutions is k!, it is crucial to break the symmetries to avoid
obtaining a huge number of redundant solutions. Moreover,
this constraint performs an efficient filtering by drastically
reducing the size of the search space.

Finally, we get the following query (Q1) modeling the ini-
tial clustering problem:

∧1≤i≤k closed(Xi) ∧
coverTransactions([X1, ..., Xk]) ∧
∧1≤i<j≤k overlapTransactions(Xi, Xj) = 0∧
canonical([X1, ..., Xk])

On our running example, with k=3 patterns, query Q1

provides 5 solutions (see Table 2).

3.2 Refining queries
By only refining queries on a clustering, the data analyst

can easily produce other clusterings satisfying different prop-
erties. This section illustrates this feature of our approach

Sol. X1 X2 X3

s1 {C, F, G, H} {E} {A, D, F}
s2 {A, F} {C, H} {E, G}
s3 {C, E, H} {E, G} {F}
s4 {A, F} {C, E, H} {G}
s5 {A} {B, E, G} {C}

Table 2: Set of different clusterings (Q1).

Sol. X1 X2 X3

s′1 {C, F, G, H} {E} {F}
s′2 {A, D, F} {C, F, G, H} {E}
s′3 {A, F} {C, F, G, H} {E}
s′4 {A, E, F} {E} {F}
s′5 {A, D, F} {E} {F}
s′6 {A} {B, E, G} {C}
s′7 {A, F} {C, E, H} {G}
s′8 {A, F} {C, H} {G}
s′9 {A, F} {C, H} {E, G}
s′10 {C, E, H} {E, G} {F}
s′11 {C, H} {E, G} {F}
s′12 {C, H} {F} {G}
s′13 {C, E, H} {F} {G}

Table 3: Set of different clusterings (Q4).

that facilitates the building of global patterns and the dis-
covery of knowledge. From the initial query Q1, we derive
queries Q2 and Q3 avoiding clusterings with non-frequent
patterns and clusterings with small size patterns.

3.2.1 Removing solutions with non-frequent patterns
When a cluster has a low frequency, it lacks of representa-

tivity and the clustering is not considered as reliable. From
Q1, it is easy to add frequency constraints ensuring that
each pattern is frequent. With a frequency threshold δ1=2,
we get Q2:

∧1≤i≤k closed(Xi) ∧
coverTransactions([X1, ..., Xk]) ∧
∧1≤i<j≤k overlapTransactions(Xi, Xj) = 0∧
canonical([X1, ..., Xk])∧
∧1≤i≤k freq(Xi) ≥ δ1

Pattern {C,F,G,H} of solution s1 has a frequency of 1
and thus is removed. With Q2, there remain 4 solutions (s2,
s3, s4, and s5, see Table 2).

3.2.2 Removing solutions with small size patterns
A clustering with at least one cluster Xi of small size3 is

not considered as useful because Xi does not ensure enough
similarity between transactions associated to Xi. It is simple
to add constraints requiring that the size of each pattern is
higher than a minimal size. From Q2, with a minimal size
threshold δ2=2, we obtain the query Q3:

∧1≤i≤k closed(Xi) ∧
coverTransactions([X1, ..., Xk]) ∧
∧1≤i<j≤k overlapTransactions(Xi, Xj) = 0∧
canonical([X1, ..., Xk])∧
∧1≤i≤k freq(Xi) ≥ δ1 ∧
∧1≤i≤k size(Xi) ≥ δ2

With the query Q3, there is only one solution: s2 with
X1={A,F}, X2={C,H} and X3={E,G} (cf. Table 2).

3Moreover, clustering with clusters of size 1 often reflects
values coming from the binarization of an attribute (such as
A, B and C in Table 1) and are useless.



3.3 Solving other Clustering Problems
In the same way, it is easy to express other clustering

problems [2] such as soft clustering, co-clustering, and soft
co-clustering.

3.3.1 Soft clustering

This problem is a relaxed version of the clustering where
small overlaps on transactions (less than a threshold δT )
are allowed. The query Q4 (soft version of Q1) models this
problem:

∧1≤i≤k closed(Xi) ∧
coverTransactions([X1, ..., Xk]) ∧
∧1≤i<j≤k overlapTransactions(Xi, Xj) ≤ δT ∧
canonical([X1, ..., Xk])

With k=3 and a maximal overlap between transactions
δT=1, Q4 produces 13 solutions (see Table 3).

With s′1, the overlaps are the transaction t11 (covered by
X1 and X3) and the transaction t2 (covered by X2 and X3)
(see Tables 3 and 1). Removing solutions with non frequent
patterns (with δ1=2) leads to 8 solutions (from s′6 to s′13).
By adding a minimal size constraint δ2=2, only the solu-
tion s′9 remains (which is also the solution s2 of the initial
clustering problem, see Section 3.2.2).

3.3.2 Co-clustering

The co-clustering task consists in finding k clusters cover-
ing both the set of transactions and the set of items, without
any overlap on transactions or on items. Query Q5 expresses
this problem:

∧1≤i≤k closed(Xi) ∧
coverTransactions([X1, ..., Xk]) ∧
∧1≤i<j≤k overlapTransactions(Xi, Xj) = 0∧
coverItems([X1, ..., Xk]) ∧
∧1≤i<j≤k overlapItems(Xi, Xj) = 0∧
canonical([X1, ..., Xk])

3.3.3 Soft co-clustering

This problem is a relaxed version of the co-clustering, al-
lowing small overlaps on transactions (less than δT ) and on
items (less than δI). The query Q6 (soft version of Q4 and
Q5) models this task:

∧1≤i≤k closed(Xi) ∧
coverTransactions([X1, ..., Xk]) ∧
∧1≤i<j≤k overlapTransactions(Xi, Xj) ≤ δT ∧
coverItems([X1, ..., Xk]) ∧
∧1≤i<j≤k overlapItems(Xi, Xj) ≤ δI ∧
canonical([X1, ..., Xk])

3.3.4 Balanced clustering

In clustering, we generally prefer solutions in which the
frequencies of the clusters do not differ too much from each
other. Query Q7 describes clusterings with balanced fre-
quencies. For any couple of clusters (Xi, Xj), their difference
of frequencies must be lower than a threshold ∆×m where
∆ is a percentage. Looking for clusterings with balanced
size clusters could be achieved in a same way.

∧1≤i≤k closed(Xi) ∧
coverTransactions([X1, ..., Xk]) ∧
∧1≤i<j≤k overlapTransactions(Xi, Xj) = 0 ∧
canonical([X1, ..., Xk]) ∧
∧1≤i<j≤k | freq(Xi)− freq(Xj) | ≤ ∆×m

4. MODELING AND SOLVING USING SAT
Satisfiability (SAT) is the problem of determining if the

variables of a given boolean formula can be assigned in such a
way as to make the formula be evaluated to True. A formula
is in conjunctive normal form (CNF) if it is a conjunction
of clauses, where a clause is a disjunction of literals and a
literal is either a variable xi or its negation ¬xi.

Even if the SAT problem is NP-complete, efficient and
scalable algorithms for SAT, that were developed over the
last decade, have contributed to dramatic advances in the
ability to automatically solve problem instances involving
tens of thousands of variables and millions of constraints.
That is why, we have chosen to transform a query into a
CNF and then use a SAT solver to find its solutions.

In the remainder of this section, let (dt,i) be the (m,n)
boolean matrix where (dt,i=True) iff (i∈t). Queries are
modeled in two steps. First, unknown patterns are mod-
eled using boolean variables and matrix (dt,i). Then, each
built-in constraint its expressed using a CNF.

4.1 Modeling unknown patterns
Let X1, X2, ..., Xk be the k patterns we are looking for.

In a same way as [14, 23], the link between the data set
T and an unknown pattern Xj is performed by introducing
two kinds of boolean variables:
- X1,j , X2,j , ..., Xn,j s.t. (Xi,j=True) iff (i ∈ Xj)
- T1,j , T2,j , ..., Tm,j s.t. (Tt,j=True) iff (Xj ⊂ t)
The relation (Xj ⊂ t) can be transformed into the following
CNF: ∧

{i∈I|¬dt,i}

¬Xi,j (1)

The relationship between Xj and T is modeled by stating
that, for each transaction t, (Tt,j=True) iff Xj covers t:

∀t ∈ T , Tt,j ⇔ (Xj ⊂ t) (2)

Using Eq. 1, the left to right implication of Eq. 2 can be
transformed into the following CNF:∧

t∈T

(
∧

{i∈I|¬dt,i}

(¬Tt,j ∨ ¬Xi,j)) (3)

Using Eq. 1, the right to left implication of Eq. 2 can be
transformed into the following CNF:∧

t∈T

(
∨

{i∈I|dt,i}

Xi,j ∨ Tt,j) (4)

Finally, Eq. 3 and Eq. 4 must hold for every Xj , 1≤j≤k.
So, the SAT encoding of a query with k unknown patterns
requires k ×m× n binary clauses.

4.2 Constraints as boolean formulae
This section provides the boolean formulae associated to

built-in constraints. The following ones have a straightfor-
ward encoding:
- Xp = Xq → ∧i∈I(Xi,p ⇔ Xi,q)
- io ∈ Xp → Xi0,p
- Xp ∩Xq = Xr → ∧i∈I(Xi,r ⇔ Xi,p ∧Xi,q)
- Xp ∪Xq = Xr → ∧i∈I(Xi,r ⇔ Xi,p ∨Xi,q)
- Xp\Xq = Xr → ∧i∈I(Xi,r ⇔ Xi,p ∧ ¬Xi,q)
- coverItems([X1, ..., Xk]) → ∧i∈I(∨j∈[1..k]Xi,j)
- coverTransactions([X1, ..., Xk]) → ∧t∈T (∨j∈[1..k]Tt,j)

All threshold constraints are modelled using the sorting
network approach (for technical details, see [7]) in order to



dataset #transactions #items density
Australian 690 125 0.40
Mushroom 8124 119 0.19
Soybean 630 50 0.32

Primary-Tumor 336 36 0.48
Zoo 101 36 0.44

Meningitis 329 82 0.26

Table 4: Description of the datasets.

prevent prohibitive grounding. Using such an encoding, the
size of the CNF modelling a threshold constraint is inde-
pendent from the value of the threshold but depends on
the maximal value for the considered measure. For exam-
ple, the size of the CNF for constraint (freq(Xi) ≥ δ1) is
O(m×log(m)), and does not depend on δ1. The size of the
CNF for constraint (size(Xj) ≤ δ2) is O(n×log(n)), and
does not depend on δ2. Threshold constraints for measures
like overlapItems and overlapTransactions are encoded
in the same way.

4.3 Ensuring completeness
Given a CNF, SAT solvers either find one instanciation

(and only one) for the variables evaluating the formula to
True, or prove there is no such an instanciation. In order to
ensure the completeness of our approach, restarts are per-
formed.

Let F be the CNF modeling a query Q. F is the con-
junction of the CNF associated to the modeling of unknown
patterns (see Section 4.1) and the CNFs associated to the
modeling of the constraints involved in Q (see Section 4.2).
Resolution begins with F . Then, after having obtained the
i-th solution si, its negation ¬si is added to the (current)
CNF and resolution is restarted in order to look for another
solution. The process ends when a failure occurs, i.e. when
all solutions have been found.

Using restarts may seem too naive, but in practice is pow-
erful (see experiments in Section 5.1). This is because the
CNF F contains much binary clauses (see Section 4.1), and
so, filtering by unit propagation will be very effective.

The SAT solver MiniSat4 [6] has been used for experi-
ments, because its implementation proved easy to modify
and MiniSat is one of the most efficient SAT solvers.

5. EXPERIMENTS
Recalling that the key contribution of this paper is to pro-

pose a constraint-based language to model and mine global
patterns in a declarative way. Therefore, the goal of the
experiments is to provide better insights on the use of our
approach in order to discover global patterns with the ex-
ample of clustering based on associations.

Experiments were performed on several benchmarks from
the UCI repository5 and also a real-world dataset Meningi-
tis gathering 329 children hospitalized for acute meningitis.
Characteristics of datasets are presented in Table 4. Experi-
ments were conducted on a PC having a 2.83 GHz Intel Core
2 Duo Processor and 4GB of RAM, running Ubuntu Linux.

5.1 Clustering Queries
This section illustrates the successive query refinement de-

picted in Section 3 and leading to the query Q3.

4http://minisat.se/
5http://www.ics.uci.edu/˜mlearn/MLRepository.html
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Figure 1: NoS. for refinements Q1 to Q3 (Soybean).
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Figure 2: NoS. for refinements Q1 to Q3 (Meningitis).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1  2  3  4  5  6

N
um

be
r 

of
 s

ol
ut

io
ns

k

Australian
Meningitis
Mushroom

Soybean
Primary-Tumor

Zoo

Figure 3: NoS. to query Q3 on several datasets.

Fig. 1 (resp. Fig. 2) gives the total number of solutions
for queries Q1, Q2, and Q3 for the dataset Soybean (resp.
Meningitis) according to k (i.e., the number of patterns).
Applying the stepwise refinements from query Q1 to query
Q3 drastically reduces the number of clusterings and high-
lights on the most promising ones (note that the y-axis is a
logarithmic scale).

Fig. 3 depicts the number of solutions to query Q3 on
several datasets. In some cases, the query can be satisfied
by a large number of solutions and we do not report results
when there are more than one million of solutions. It es-
pecially happens with Australian because this dataset pro-
vides a huge number of closed patterns. In such situations,
the query should be refined (by increasing the minimal fre-
quency and/or size thresholds or adding new constraints).

The completeness of our approach is ensured by restart-
ing the SAT solver. Each time a new solution is found, its
negation is stored and added to the current CNF. Memory
consumption becomes too high above millions of solutions.
From a practical point of view, as the data analyst is inter-
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datasets.
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Figure 5: NoS. according to k for several δT values
(Soybean).
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Figure 6: NoS. according to k for several δT values
(Primary-Tumor).

ested in extracting a small number of solutions, it does not
make sense to perform mining providing millions of patterns.
Once again, the stepwise refinement query should be used
to avoid these situations and to focus on the most relevant
patterns.

Fig. 4 gives the computing times on several datasets, show-
ing the efficiency of our approach. Even for rather large
datasets like Mushroom, computing times are still affordable.

5.2 Soft Clustering
Fig. 5 and Fig. 6 provide soft clustering results with query

Q4 on datasets Soybean and Primary-Tumor. Curves indi-
cate the number of solutions according to k and the maximal
overlap threshold δT on transactions. As expected, the num-
ber of solutions increases with the size of the overlap. The
number of solutions can be easily controlled by adjusting
(decreasing/increasing) δT .
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Figure 7: NoS. according to k for several ∆ values
(Zoo).
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Figure 8: NoS. according to k for several ∆ values
(Primary-Tumor).

5.3 Balanced Clustering
We performed experiments with query Q7. Fig. 7 and

Fig. 8 display curves indicating the number of solutions
on datasets Zoo and Primary-Tumor according to k and ∆.
Adding the balanced frequencies constraint strongly reduces
the number of solutions. For dataset Zoo, only a gap ∆=40%
allows to find a solution for k=2. Moreover, with k=3 and
k=4, there is no solution with a gap ∆=10%.

6. RELATED WORK
The data mining literature includes many approaches to

reduce the number of produced patterns such as the con-
densed representations of patterns [4], the compression of
the dataset by exploiting Minimum Description Length Prin-
ciple [25], the discovery of k representative patterns with
probabilistic models for summarizing frequent patterns [19].
These approaches mainly aim at reducing the redundancy
between patterns and often focus on frequent patterns.

Taking into account the relationships between patterns
is explicitly required to produce global patterns or pattern
sets [3, 5, 10]. A large number of these methods are based
on two-step techniques. The first step generates an ex-
haustive collection of local patterns and then the patterns
are heuristically post-processed to select a smaller subset
of complementary relevant patterns such as in associative
classification [18]. In [5], the authors propose a framework
to mine constraint-based pattern sets by adapting existing
techniques for itemset mining to pattern set mining. Never-
theless, the extraction of the addressed pattern sets have to
satisfy properties such as the (anti-)monotonicity. There are
few methods without heuristic to mine complete and correct
pattern sets or global patterns and in practice running tech-



niques are devoted to specific kinds of global patterns [17,
24]. General data mining frameworks based on the notion of
local patterns to design global models are presented in [10,
15]. These frameworks help to analyze and improve current
methods in the area.

Recent works [12, 13, 14, 23] have shown the cross-fertilization
between data mining and Constraint Programming (CP).
Indeed, CP provides a general declarative methodology for
modeling and solving constraint problems. CP facilitates
the design of generic methods handling several patterns,
that is a key point in pattern set mining. Techniques for
mining itemsets and n-ary patterns (i.e., the combination
of n patterns) have been proposed. Looking for declarative
techniques in pattern mining was also recently investigated
in [11]: by using relational algebra, the authors propose an
algebraic framework for pattern discovery for expressing a
wide range of queries.

7. CONCLUSION AND FUTURE WORK
We have proposed a constraint-based language allowing

to easily express different mining tasks in a declarative way.
Thanks to the declarative process, extending or changing
the specification to refine the results and discover more rele-
vant patterns or address new global patterns is very simple.
Moreover, all constraints can be combined together and new
constraints can be added. The efficiency and the flexibility
of our approach is shown on several examples coming from
clustering based on associations. Thanks to query refine-
ments, the user is able to produce clusterings satisfying dif-
ferent constraints and generating more meaningful clusters.

As future work, we want to enrich our constraint-based
language with further constraints to capture and model a
wider range of data mining tasks. The scalability of the
approach to larger values of k and larger datasets will also
be investigated. Another promising direction is to integrate
optimisation criteria in our framework.
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